更小的VertorDrawable

4 篇文章 0 订阅
1 篇文章 0 订阅

转载请注明出处:http://www.jianshu.com/p/8d5fe7176315

本篇文章翻译自谷歌出的优化视频里面的光头佬(Colt McAnlis),原文地址需翻墙, 以下正文:

如我们所见,矢量图(VertorDrawable)可以很好的减少我们APK的大小。它只需要一个文件就可以解决不同分辨率显示图片的问题,不像普通图片那样需要切几套图。但不得不说,它还可以更小。

只要处理好下面这两步,一切都搞定。

简化你的paths

使用矢量图的流程包括在第三方程序创建一个SVG文件,然后通过VectorAssetStudio转成相应的格式。但在SVG转成VD过程种,只要你一不小心,就有可能导致最后的矢量图变得臃肿。

1.png

这一些归结于:Paths

Path对象是SVG和VD(VectorDrawable)所支持属性的最小公分母。这没什么问题,它们都非常容易扩展,可以代表一堆图形,使用这个属性可以更接近你预期效果。

但这会带来两个大问题。

第一个,Path数据真的非常大和非常快。当你使用VD来表示一个非常复杂的图形时,唯一的办法是使用一个很大path来表示。即使图形有很小的波动都可能导致很多新的path节点被加进来。

第二个,如我们之前说的那样,Path在Android平台上使用简单的图形会比栅格化更有利。默认情况下,这些矢量图都会被栅格化软件(例如:SKIA)转成一个bitmap,然后上传到texture给GPU处理。矢量图越复杂,这个过程所花的时间就会越长。

因此,简化你的path不仅可以减少你矢量图的文件大小,还会加快解析矢量文件的速度。

实际上简化你的path,是耐心的锻炼。像VectorAssetStudio这么屌的工具,在处理svg到vd过程也没有对path进行优化。由于Path数据是从SVG转给VD的,因此,在创作阶段优化是比较简单的,无论你使用什么工具创建SVG(好例子在这)都得在把文件导出来后,找一种方法来优化它。

这能够确保你最后生成的VD里面的path信息尽可能的小。

ShapeDrawables探索

可能一种更极端的优化方法是去掉所有的path。如果你可以用简单的基本对象代表一个图形或一张图片,那对你的性能将有很大的提高且能减小文件的大小。这可以用ShapeDrawables实现,它可以用一些对象来表示一些图形,而不是用默认的path来表示。

2.png

在某些情况下,这可能为你节省一堆空间…不过它的缺点是你得自己手动编写这些文件。不幸的是,我还没发现有哪种工具可以让你用所见即所得的方式来编辑这些shapes文件。你得手动在xml里创建它们,然后在Android Studio的预览窗口看它们长什么样。

不过如果你愿意处理这个过程,那么ShapeDrawables可以给你省不少空间呢。

PS:由于文人水平有限,如有翻译得不好的地方,请留言讨论。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
1 目标检测的定义 目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。 目标检测任务可分为两个关键的子任务,目标定位和目标分类。首先检测图像中目标的位置(目标定位),然后给出每个目标的具体类别(目标分类)。输出结果是一个边界框(称为Bounding-box,一般形式为(x1,y1,x2,y2),表示框的左上角坐标和右下角坐标),一个置信度分数(Confidence Score),表示边界框中是否包含检测对象的概率和各个类别的概率(首先得到类别概率,经过Softmax可得到类别标签)。 1.1 Two stage方法 目前主流的基于深度学习的目标检测算法主要分为两类:Two stage和One stage。Two stage方法将目标检测过程分为两个阶段。第一个阶段是 Region Proposal 生成阶段,主要用于生成潜在的目标候选框(Bounding-box proposals)。这个阶段通常使用卷积神经网络(CNN)从输入图像中提取特征,然后通过一些技巧(如选择性搜索)来生成候选框。第二个阶段是分类和位置精修阶段,将第一个阶段生成的候选框输入到另一个 CNN 中进行分类,并根据分类结果对候选框的位置进行微调。Two stage 方法的优点是准确度较高,缺点是速度相对较慢。 常见Tow stage目标检测算法有:R-CNN系列、SPPNet等。 1.2 One stage方法 One stage方法直接利用模型提取特征值,并利用这些特征值进行目标的分类和定位,不需要生成Region Proposal。这种方法的优点是速度快,因为省略了Region Proposal生成的过程。One stage方法的缺点是准确度相对较低,因为它没有对潜在的目标进行预先筛选。 常见的One stage目标检测算法有:YOLO系列、SSD系列和RetinaNet等。 2 常见名词解释 2.1 NMS(Non-Maximum Suppression) 目标检测模型一般会给出目标的多个预测边界框,对成百上千的预测边界框都进行调整肯定是不可行的,需要对这些结果先进行一个大体的挑选。NMS称为非极大值抑制,作用是从众多预测边界框中挑选出最具代表性的结果,这样可以加快算法效率,其主要流程如下: 设定一个置信度分数阈值,将置信度分数小于阈值的直接过滤掉 将剩下框的置信度分数从大到小排序,选中值最大的框 遍历其余的框,如果和当前框的重叠面积(IOU)大于设定的阈值(一般为0.7),就将框删除(超过设定阈值,认为两个框的里面的物体属于同一个类别) 从未处理的框中继续选一个置信度分数最大的,重复上述过程,直至所有框处理完毕 2.2 IoU(Intersection over Union) 定义了两个边界框的重叠度,当预测边界框和真实边界框差异很小时,或重叠度很大时,表示模型产生的预测边界框很准确。边界框A、B的IOU计算公式为: 2.3 mAP(mean Average Precision) mAP即均值平均精度,是评估目标检测模型效果的最重要指标,这个值介于0到1之间,且越大越好。mAP是AP(Average Precision)的平均值,那么首先需要了解AP的概念。想要了解AP的概念,还要首先了解目标检测中Precision和Recall的概念。 首先我们设置置信度阈值(Confidence Threshold)和IoU阈值(一般设置为0.5,也会衡量0.75以及0.9的mAP值): 当一个预测边界框被认为是True Positive(TP)时,需要同时满足下面三个条件: Confidence Score > Confidence Threshold 预测类别匹配真实值(Ground truth)的类别 预测边界框的IoU大于设定的IoU阈值 不满足条件2或条件3,则认为是False Positive(FP)。当对应同一个真值有多个预测结果时,只有最高置信度分数的预测结果被认为是True Positive,其余被认为是False Positive。 Precision和Recall的概念如下图所示: Precision表示TP与预测边界框数量的比值 Recall表示TP与真实边界框数量的比值 改变不同的置信度阈值,可以获得多组Precision和Recall,Recall放X轴,Precision放Y轴,可以画出一个Precision-Recall曲线,简称P-R
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值