电脑GPU信息

NVIDIA GeForce 940MX

驱动程序版本:24.21.13.9764

组件信息:

### 配置和使用电脑GPU在VSCode中的方法 为了能够在VSCode中充分利用计算机的GPU资源,通常涉及到特定于编程语言或框架的支持。对于机器学习和深度学习项目来说,常见的做法是通过支持CUDA的Python环境来实现这一点。 #### 安装NVIDIA CUDA Toolkit并配置环境变量 确保已经安装了适用于操作系统的NVIDIA驱动程序以及CUDA工具包。完成安装后,需按照如下方式设置环境变量以便让系统识别CUDA路径[^3]: 找到系统变量的`Path`,双击进入路径配置界面之后点击新建,将CUDA中的`bin`路径配置到里面,并点击确定。 #### 创建兼容的Python虚拟环境 建议创建一个新的Conda或者venv类型的Python虚拟环境专门用于涉及GPU加速的任务。这可以避免不同库之间的冲突问题。例如,在Anaconda Prompt下执行命令: ```bash conda create -n gpu_env python=3.9 cudatoolkit=11.3 -c conda-forge ``` 此命令会建立名为gpu_env的新环境,并指定使用的Python版本为3.9及CUDA toolkit版本为11.3。 #### 安装必要的软件包 激活上述创建好的Python环境中,接着安装PyTorch或其他依赖于GPU运算的库。比如要安装带有CUDA支持的PyTorch版本,可以通过pip来进行: ```bash pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113 ``` 这里假设已知目标硬件支持的是CUDA 11.3;如果不确定具体版本,则应查阅官方文档获取最新指导。 #### 使用CodeGeeX辅助开发(可选) 考虑到希望提高编码效率,可以在VSCode里安装CodeGeeX插件以获得更强大的AI代码补全功能。只需前往VS Code插件市场搜索"codegeex"即可免费使用该扩展,不过需要注意的是,需要确保VS Code版本不低于1.68.0[^1]。 #### 编写能够调用GPU的应用程序 最后一步是在编写应用程序时显式指明使用GPU设备作为计算资源。以下是简单的TensorFlow例子展示如何做到这点: ```python import tensorflow as tf # 检查是否有可用的GPU设备 print("Num GPUs Available:", len(tf.config.experimental.list_physical_devices('GPU'))) mnist = tf.keras.datasets.mnist (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train, x_test = x_train / 255.0, x_test / 255.0 model = tf.keras.models.Sequential([ tf.keras.layers.Flatten(input_shape=(28, 28)), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dropout(0.2), tf.keras.layers.Dense(10) ]) predictions = model(x_train[:1]).numpy() loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) model.compile(optimizer='adam', loss=loss_fn, metrics=['accuracy']) with tf.device('/GPU:0'): history = model.fit(x=x_train, y=y_train, epochs=5, validation_split=0.2) ``` 这段脚本不仅展示了怎样加载数据集、构建模型结构,还特别强调了通过`tf.device('/GPU:0')`语句强制训练过程发生在第一个GPU上运行。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值