1. 准备工作
首先,确保你已经安装了Clojure和Leiningen,这是Clojure的构建工具。我们还需要一些Clojure的图像处理库,例如clojure-opencv。
2. 创建项目
使用Leiningen创建一个新的Clojure项目:
sh
lein new app image-processing
cd image-processing
3. 添加依赖
在你的project.clj文件中添加必要的依赖,例如clojure-opencv库用于图像处理:
clojure
(defproject image-processing "0.1.0-SNAPSHOT"
:dependencies [[org.clojure/clojure "1.10.3"]
[clj-opencv "0.7.1"]])
4. 目标识别
首先,我们需要实现图像的预处理和目标识别功能。在Clojure中,我们可以使用clojure-opencv库进行图像处理。
图像预处理
clojure
(ns image-processing.core
(:require [opencv4.core :as cv]
[opencv4.utils :as u]))
(defn preprocess-image [path width height]
(let [image (cv/imread path)
resized-image (cv/new-mat)]
(cv/resize image resized-image (cv/new-size width height))
resized-image))
目标识别
假设我们已经有一个预训练的模型可以用于目标识别,这里我们简化为模拟目标识别的功能:
clojure
(defrecord BoundingBox [x y width height])
(defrecord DetectedObject [bounding-box confidence])
(defn detect-objects [image]
[(->DetectedObject (->BoundingBox 50 50 50 50) 0.9)
(->DetectedObject (->BoundingBox 150 150 50 50) 0.8)])
5. 图像相似度比较
我们将使用一种简单的图像哈希算法来比较图像相似度。
clojure
(defn average-hash [image]
(let [gray-image (cv/new-mat)
resized-image (cv/new-mat)]
(cv/cvt-color image gray-image cv/COLOR_BGR2GRAY)
(cv/resize gray-image resized-image (cv/new-size 8 8))
(let [mean (u/mean-scalar resized-image)]
(apply str
(for [row (range 8)
col (range 8)]
(let [pixel-value (cv/get! resized-image row col)]
(if (>= pixel-value mean) "1" "0")))))))
(defn compare-hashes [hash1 hash2]
(let [matching-bits (count (filter true? (map = hash1 hash2)))]
(/ matching-bits (count hash1))))
6. 实现完整示例
下面是一个完整的Clojure代码示例,将上述功能结合在一起:
clojure
(ns image-processing.core
(:require [opencv4.core :as cv]
[opencv4.utils :as u]))
(defrecord BoundingBox [x y width height])
(defrecord DetectedObject [bounding-box confidence])
(defn preprocess-image [path width height]
(let [image (cv/imread path)
resized-image (cv/new-mat)]
(cv/resize image resized-image (cv/new-size width height))
resized-image))
(defn detect-objects [image]
[(->DetectedObject (->BoundingBox 50 50 50 50) 0.9)
(->DetectedObject (->BoundingBox 150 150 50 50) 0.8)])
(defn average-hash [image]
(let [gray-image (cv/new-mat)
resized-image (cv/new-mat)]
(cv/cvt-color image gray-image cv/COLOR_BGR2GRAY)
(cv/resize gray-image resized-image (cv/new-size 8 8))
(let [mean (u/mean-scalar resized-image)]
(apply str
(for [row (range 8)
col (range 8)]
(let [pixel-value (cv/get! resized-image row col)]
(if (>= pixel-value mean) "1" "0")))))))
(defn compare-hashes [hash1 hash2]
(let [matching-bits (count (filter true? (map = hash1 hash2)))]
(/ matching-bits (count hash1))))
(defn -main [& args]
;; 读取图像
(let [image-path "path/to/your/image.jpg"
image (preprocess-image image-path 64 64)]
;; 目标识别
(let [detected-objects (detect-objects image)]
(doseq [obj detected-objects]
(println obj)))
;; 图像相似度比较
(let [image1 (preprocess-image "path/to/your/image1.jpg" 64 64)
image2 (preprocess-image "path/to/your/image2.jpg" 64 64)
hash1 (average-hash image1)
hash2 (average-hash image2)
similarity (compare-hashes hash1 hash2)]
(println "Image similarity:" similarity))))