图标点选验证码识别及分割


图标点选验证码是一种防止自动化攻击的手段,要求用户点击指定的图标进行验证。本文介绍如何使用Swift结合ONNX模型和Siamese神经网络来实现图标点选验证码的识别和分割。

一、技术背景
图标点选验证码的破解分为两部分:图标分割和相似度对比。图标分割用于检测并裁剪出验证码图片中的各个图标;相似度对比则用于确定这些图标是否与指定的目标图标相匹配。

二、图标分割
1. 图像处理
首先,加载并处理图像。为了适应模型的输入要求,需要对图像进行缩放和填充。

swift

import UIKit

func paddedResize(image: UIImage, newWidth: CGFloat, newHeight: CGFloat) -> UIImage {
    let oldWidth = image.size.width
    let oldHeight = image.size.height
    let scale = min(newWidth / oldWidth, newHeight / oldHeight)
    let scaledWidth = oldWidth * scale
    let scaledHeight = oldHeight * scale
    
    let renderer = UIGraphicsImageRenderer(size: CGSize(width: newWidth, height: newHeight))
    let newImage = renderer.image { (context) in
        let xOffset = (newWidth - scaledWidth) / 2
        let yOffset = (newHeight - scaledHeight) / 2
        image.draw(in: CGRect(x: xOffset, y: yOffset, width: scaledWidth, height: scaledHeight))
    }
    
    return newImage
}

let image = UIImage(named: "path/to/image.jpg")!
let resizedImage = paddedResize(image: image, newWidth: 640, newHeight: 640)
2. ONNX模型推理
加载ONNX模型并进行目标检测。

swift

import CoreML

func detectObjects(image: UIImage) -> [CGRect] {
    guard let model = try? VNCoreMLModel(for: IconDetection().model) else {
        fatalError("Failed to load model")
    }
    
    let request = VNCoreMLRequest(model: model) { request, error in
        // Handle results
    }
    
    let handler = VNImageRequestHandler(cgImage: image.cgImage!, options: [:])
    try? handler.perform([request])
    
    return []
}

let boxes = detectObjects(image: resizedImage)
3. 画框与裁剪
根据检测结果画出边框并裁剪图标。

swift

func drawRectangle(image: UIImage, box: CGRect) -> UIImage {
    let renderer = UIGraphicsImageRenderer(size: image.size)
    let newImage = renderer.image { context in
        image.draw(at: CGPoint.zero)
        UIColor.red.setStroke()
        let rect = CGRect(x: box.origin.x, y: box.origin.y, width: box.width, height: box.height)
        context.stroke(rect, width: 2)
    }
    return newImage
}

func cropImage(image: UIImage, box: CGRect) -> UIImage? {
    guard let cgImage = image.cgImage?.cropping(to: box) else { return nil }
    return UIImage(cgImage: cgImage)
}

for box in boxes {
    if let croppedImage = cropImage(image: image, box: box) {
        // Save croppedImage
    }
}
三、相似度对比
1. Siamese神经网络
使用Siamese网络进行相似度对比。

swift

import CoreML

func preprocessImage(image: UIImage) -> CVPixelBuffer? {
    let resizedImage = image.resized(to: CGSize(width: 60, height: 60))
    return resizedImage.pixelBuffer()
}

func getSimilarity(model: VNCoreMLModel, img1: UIImage, img2: UIImage) -> Float? {
    guard let input1 = preprocessImage(image: img1),
          let input2 = preprocessImage(image: img2) else { return nil }
    
    let request = VNCoreMLRequest(model: model) { request, error in
        // Handle results
    }
    
    let handler1 = VNImageRequestHandler(cvPixelBuffer: input1, options: [:])
    let handler2 = VNImageRequestHandler(cvPixelBuffer: input2, options: [:])
    
    try? handler1.perform([request])
    try? handler2.perform([request])
    
    return nil // Return similarity result
}

let similarity = getSimilarity(model: model, img1: croppedImage, img2: targetImage)
四、测试与结果
进行模型测试并展示结果。

swift

func testModel(imagePath: String, targetImagePath: String) {
    guard let image = UIImage(named: imagePath),
          let targetImage = UIImage(named: targetImagePath) else { return }
    
    let resizedImage = paddedResize(image: image, newWidth: 640, newHeight: 640)
    let boxes = detectObjects(image: resizedImage)
    
    for (index, box) in boxes.enumerated() {
        if let croppedImage = cropImage(image: image, box: box) {
            // Save croppedImage
            let similarity = getSimilarity(model: model, img1: croppedImage, img2: targetImage)
            print("Similarity for image \(index): \(similarity ?? 0)")
        }
    }
}

testModel(imagePath: "path/to/image.jpg", targetImagePath: "path/to/target_image.jpg")

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值