1. 项目概述
在这篇文章中,我们将使用 Dart 编程语言模拟登录过程,同时借助 Python 来识别验证码。通过 Dart 的 HTTP 请求功能模拟浏览器提交表单,而验证码的识别则交由 Python 完成,结合 Selenium 和 Tesseract OCR 处理验证码图像。
2. 环境准备
Dart 编程语言:用于发送 HTTP 请求和控制登录过程。
Python 和 Selenium:用于浏览器自动化操作和验证码识别。
Tesseract OCR:用于从验证码图像中提取文本内容。
3. Dart 代码:模拟登录请求
在 Dart 中,我们可以使用 http 库来模拟发送 HTTP 请求,提交登录信息,并接收验证码图像的 URL。然后,我们将调用 Python 脚本来处理验证码。
dart
import 'dart:convert';
import 'dart:io';
import 'package:http/http.dart' as http;
class LoginAutomation {
// 模拟登录过程
Future<void> login(String username, String password) async {
var loginUrl = Uri.parse('https://example.com/login');
// 登录时需要的表单数据
var data = {
'username': username,
'password': password,
};
// 发起 POST 请求进行登录
var response = await http.post(loginUrl, body: data);
if (response.statusCode == 200) {
print('登录请求已发送,处理中...');
// 模拟获取验证码图像URL(假设通过 API 返回验证码图片的 URL)
var captchaUrl = 'https://example.com/captcha.jpg';
// 调用 Python 脚本进行验证码识别
var captchaText = await callPythonScript(captchaUrl);
// 假设我们已经识别出验证码,进行后续的登录处理
var result = await postCaptchaAndLogin(captchaText);
if (result) {
print('登录成功');
} else {
print('登录失败');
}
} else {
print('登录请求失败');
}
}
// 调用 Python 脚本来处理验证码
Future<String> callPythonScript(String captchaUrl) async {
var process = await Process.start(
'python', ['captcha_handler.py', captchaUrl]);
var output = await process.stdout.transform(utf8.decoder).join();
return output;
}
// 使用验证码进行后续登录操作
Future<bool> postCaptchaAndLogin(String captchaText) async {
var loginWithCaptchaUrl = Uri.parse('https://example.com/verify');
var data = {
'captcha': captchaText,
};
var response = await http.post(loginWithCaptchaUrl, body: data);
return response.statusCode == 200;
}
}
void main() {
var automation = LoginAutomation();
automation.login('testuser', 'password123');
}
4. Python 代码:处理验证码
Python 代码会模拟浏览器自动化,截图验证码区域,使用 Tesseract OCR 进行图像识别。
python
import time
import pytesseract
from selenium import webdriver
from PIL import Image
def get_captcha(captcha_url):
# 启动浏览器并访问验证码页面
driver = webdriver.Chrome()
driver.get(captcha_url)
# 获取验证码图像
captcha_element = driver.find_element_by_id('captcha_img')
location = captcha_element.location
size = captcha_element.size
# 获取页面截图并裁剪验证码区域
driver.save_screenshot('fullpage.png')
image = Image.open('fullpage.png')
left = location['x']
top = location['y']
right = left + size['width']
bottom = top + size['height']
captcha_image = image.crop((left, top, right, bottom))
captcha_image.save('captcha.png')
# 使用 Tesseract OCR 识别验证码
captcha_text = pytesseract.image_to_string(captcha_image)
print(f'识别出的验证码是: {captcha_text}')
driver.quit()
return captcha_text
# 运行验证码处理程序
if __name__ == '__main__':
captcha_url = 'https://example.com/captcha.jpg'
captcha_text = get_captcha(captcha_url)
print(f'识别的验证码: {captcha_text}')
5. 代码解释
Dart 部分:更多内容访问ttocr.com或联系1436423940
login 方法使用 http 库模拟 POST 请求进行登录。
获取验证码图像的 URL 后,调用 Python 脚本进行验证码识别。
通过 callPythonScript 方法调用 Python 脚本,传递验证码 URL 并获取返回的验证码文本。
通过 postCaptchaAndLogin 方法提交验证码文本进行验证。
Python 部分:
使用 Selenium 控制浏览器获取验证码图像。
利用 Pillow 库裁剪出验证码区域并保存。
使用 Tesseract OCR 进行验证码的文字识别。