使用 Dart 与 Python 实现自动化登录及验证码识别


1. 项目概述
在这篇文章中,我们将使用 Dart 编程语言模拟登录过程,同时借助 Python 来识别验证码。通过 Dart 的 HTTP 请求功能模拟浏览器提交表单,而验证码的识别则交由 Python 完成,结合 Selenium 和 Tesseract OCR 处理验证码图像。

2. 环境准备
Dart 编程语言:用于发送 HTTP 请求和控制登录过程。
Python 和 Selenium:用于浏览器自动化操作和验证码识别。
Tesseract OCR:用于从验证码图像中提取文本内容。
3. Dart 代码:模拟登录请求
在 Dart 中,我们可以使用 http 库来模拟发送 HTTP 请求,提交登录信息,并接收验证码图像的 URL。然后,我们将调用 Python 脚本来处理验证码。

dart

import 'dart:convert';
import 'dart:io';
import 'package:http/http.dart' as http;

class LoginAutomation {
  // 模拟登录过程
  Future<void> login(String username, String password) async {
    var loginUrl = Uri.parse('https://example.com/login');
    
    // 登录时需要的表单数据
    var data = {
      'username': username,
      'password': password,
    };

    // 发起 POST 请求进行登录
    var response = await http.post(loginUrl, body: data);

    if (response.statusCode == 200) {
      print('登录请求已发送,处理中...');
      
      // 模拟获取验证码图像URL(假设通过 API 返回验证码图片的 URL)
      var captchaUrl = 'https://example.com/captcha.jpg';
      
      // 调用 Python 脚本进行验证码识别
      var captchaText = await callPythonScript(captchaUrl);

      // 假设我们已经识别出验证码,进行后续的登录处理
      var result = await postCaptchaAndLogin(captchaText);

      if (result) {
        print('登录成功');
      } else {
        print('登录失败');
      }
    } else {
      print('登录请求失败');
    }
  }

  // 调用 Python 脚本来处理验证码
  Future<String> callPythonScript(String captchaUrl) async {
    var process = await Process.start(
        'python', ['captcha_handler.py', captchaUrl]);
    var output = await process.stdout.transform(utf8.decoder).join();
    return output;
  }

  // 使用验证码进行后续登录操作
  Future<bool> postCaptchaAndLogin(String captchaText) async {
    var loginWithCaptchaUrl = Uri.parse('https://example.com/verify');
    var data = {
      'captcha': captchaText,
    };

    var response = await http.post(loginWithCaptchaUrl, body: data);
    return response.statusCode == 200;
  }
}

void main() {
  var automation = LoginAutomation();
  automation.login('testuser', 'password123');
}
4. Python 代码:处理验证码
Python 代码会模拟浏览器自动化,截图验证码区域,使用 Tesseract OCR 进行图像识别。

python

import time
import pytesseract
from selenium import webdriver
from PIL import Image

def get_captcha(captcha_url):
    # 启动浏览器并访问验证码页面
    driver = webdriver.Chrome()
    driver.get(captcha_url)

    # 获取验证码图像
    captcha_element = driver.find_element_by_id('captcha_img')
    location = captcha_element.location
    size = captcha_element.size

    # 获取页面截图并裁剪验证码区域
    driver.save_screenshot('fullpage.png')
    image = Image.open('fullpage.png')

    left = location['x']
    top = location['y']
    right = left + size['width']
    bottom = top + size['height']

    captcha_image = image.crop((left, top, right, bottom))
    captcha_image.save('captcha.png')

    # 使用 Tesseract OCR 识别验证码
    captcha_text = pytesseract.image_to_string(captcha_image)
    print(f'识别出的验证码是: {captcha_text}')

    driver.quit()
    return captcha_text

# 运行验证码处理程序
if __name__ == '__main__':
    captcha_url = 'https://example.com/captcha.jpg'
    captcha_text = get_captcha(captcha_url)
    print(f'识别的验证码: {captcha_text}')
5. 代码解释
Dart 部分:更多内容访问ttocr.com或联系1436423940

login 方法使用 http 库模拟 POST 请求进行登录。
获取验证码图像的 URL 后,调用 Python 脚本进行验证码识别。
通过 callPythonScript 方法调用 Python 脚本,传递验证码 URL 并获取返回的验证码文本。
通过 postCaptchaAndLogin 方法提交验证码文本进行验证。
Python 部分:

使用 Selenium 控制浏览器获取验证码图像。
利用 Pillow 库裁剪出验证码区域并保存。
使用 Tesseract OCR 进行验证码的文字识别。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值