算法导论 附录C C.4-6

Rosencrantz教授和Guildenstern教授各扔一枚均匀硬币n次。证明:他们得到正面朝上次数相同的概率为\frac{C_{2n}^{n}}{4^{n}}。(提示:对于Rosencrantz教授,称正面为成功;对于Guildenstern教授,称背面为成功。)并用你的结论来验证恒等式

\sum_{k=0}^{n}(C_{n}^{k})^{2} = C_{2n}^{n}

证明:

记抛n次均匀硬币后,Rosencrantz教授和Guildenstern教授正面朝上次数相同为事件A,分别以下述三种方式考察事件A的概率

1、考虑对Rosencrantz教授和Guildenstern教授定义相同的成功情况,即均为正面为成功或反面为成功。则事件A发生的概率为对所有 k\in [0, n] \cap Z,当Rosencrantz教授掷出k次正面即成功k次时,Guildenstern教授也掷出k次正面即也成功k次。因此,事件A的概率为(均匀硬币p = q = 1/2):

\sum_{k = 0}^{n}(C_{n}^{k}p^{k}q^{n-k})^{2} = \sum_{k = 0}^{n}\frac{(C_{n}^{k})^{2}}{4^{n}}

不难看出用这种方式构造出的事件A概率会用于证明题中恒等式左边

2、按题中提示,对Rosencrantz教授掷出正面为成功,对Guildenstern教授掷出反面为成功。则事件A发生的概率为对所有 k\in [0, n] \cap Z,当Rosencrantz教授掷出k次正面成功k次时,Guildenstern教授掷出n-k次反面即成功n-k次。因此,事件A的概率为:

\sum_{k=0}^{n}(C_{n}^{k}p^kq^{n-k})\cdot (C_{n}^{n-k}p^{n-k}q^k) = \frac{\sum_{k=0}^{n}C_{n}^{k}C_{n}^{n-k}}{4^{n}}

考虑等号右侧分子含义:将2n个数等分,从第一部分中取k个,从第二部分中取n-k个,求和即为所有从2n个数中取n个数的所有情况,因此上式可进一步化为:

\sum_{k=0}^{n}(C_{n}^{k}p^kq^{n-k})\cdot (C_{n}^{n-k}p^{n-k}q^k) = \frac{\sum_{k=0}^{n}C_{n}^{k}C_{n}^{n-k}}{4^{n}} = \frac{C_{2n}^{n}}{4^{n}}

即为恒等式右边

3、按自己思路构造的一种方法,最后发现对本题没啥卵用,但还是在这记录一下:

考虑Rosencrantz教授和Guildenstern教授各掷一次硬币为一个基本事件,则该基本事件有四种结果,分别是++,--,+-,-+,概率均为1/4

不难看出,前两种结果++,--的发生次数不会影响事件A(其实还是有影响的,因为需要剩下的次数能被2整除来均分给+-和-+),只需保证+-的次数和-+次数相同,事件A就会发生

因此事件A的概率为(记C_{0}^{0} = 1):

\frac{2^{n} + 2^{n-2}C_{n}^{2}C_{2}^{1} + 2^{n-4}C_{n}^{4}C_{4}^{2} + ...}{4^{n}} = \frac{\sum_{k=0}^{\left \lfloor \frac{n}{2} \right \rfloor}2^{n-2k}C_{n}^{2k}C_{2k}^{k}}{4^{n}}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值