Orchestrator Failover过程源码分析-I
模拟故障
使用测试环境, 模拟3307
集群故障
角色 | IP | 端口 | 主机名 |
---|---|---|---|
主库 | 172.16.120.10 | 3307 | centos-1 |
从库 | 172.16.120.11 | 3307 | centos-2 |
从库 | 172.16.120.12 | 3307 | centos-3 |
关闭3307主库172.16.120.10:3307
[2022-04-25 13:10:56][root@centos-1 13:10:56 ~]
[2022-04-25 13:11:22]#systemctl stop mysql3307
mysql日志
2022-04-25T13:11:35.959667+08:00 0 [Note] /usr/local/mysql5732/bin/mysqld: Shutdown complete
源码分析
我的思路是通过日志找入口.
在下文中:
- 对主库简称为centos-1
- 对两个从库分别简称为:
- centos-2
- centos-3
[mysql] 2022/04/25 13:11:27 packets.go:37: unexpected EOF
2022-04-25 13:11:27 ERROR invalid connection
2022-04-25 13:11:27 ERROR ReadTopologyInstance(172.16.120.10:3307) show global status like 'Uptime': Error 1053: Server shutdown in progress
[mysql] 2022/04/25 13:11:27 packets.go:37: unexpected EOF
2022-04-25 13:11:27 ERROR invalid connection
[mysql] 2022/04/25 13:11:27 packets.go:37: unexpected EOF
2022-04-25 13:11:27 ERROR invalid connection
2022-04-25 13:11:27 ERROR dial tcp 172.16.120.10:3307: connect: connection refused
2022-04-25 13:11:28 ERROR dial tcp 172.16.120.10:3307: connect: connection refused
2022-04-25 13:11:28 DEBUG writeInstance: will not update database_instance due to error: invalid connection
2022-04-25 13:11:32 WARNING DiscoverInstance(172.16.120.10:3307) instance is nil in 0.104s (Backend: 0.001s, Instance: 0.103s), error=dial tcp 172.16.120.10:3307: connect: connection refused
2022-04-25 13:11:33 DEBUG analysis: ClusterName: 172.16.120.10:3307, IsMaster: true, LastCheckValid: false, LastCheckPartialSuccess: false, CountReplicas: 2, CountValidReplicas: 2, CountValidReplicatingReplicas: 2, CountLaggingReplicas: 0, CountDelayedReplicas: 0, CountReplicasFailingToConnectToMaster: 0
2022-04-25 13:11:33 INFO executeCheckAndRecoverFunction: proceeding with UnreachableMaster detection on 172.16.120.10:3307; isActionable?: false; skipProcesses: false
2022-04-25 13:11:33 INFO topology_recovery: detected UnreachableMaster failure on 172.16.120.10:3307
2022-04-25 13:11:33 INFO topology_recovery: Running 1 OnFailureDetectionProcesses hooks
关闭centos-1后, 从日志可以看出:
- orchestrator对centos-1的
一些探测
操作失败了 - executeCheckAndRecoverFunction: proceeding with UnreachableMaster
通过第二条信息找"入口"
全局搜索executeCheckAndRecoverFunction: proceeding with
搜索到函数executeCheckAndRecoverFunction
这个函数比较长, 先不看. 先看一下是谁调用 executeCheckAndRecoverFunction .
搜索executeCheckAndRecoverFunction(
, 搜到CheckAndRecover
继续搜索CheckAndRecover, 查到是ContinuousDiscovery在调用它
ContinuousDiscovery 在logic包中, 被http.standardHttp调用, 而http.standardHttp又被http.Http调用, http.Http是在启动orchestrator时被调用的
go/cmd/orchestrator/main.go
// 截取部分代码
switch {
case helpTopic != "":
app.HelpCommand(helpTopic)
case len(flag.Args()) == 0 || flag.Arg(0) == "cli":
app.CliWrapper(*command, *strict, *instance, *destination, *owner, *reason, *duration, *pattern, *clusterAlias, *pool, *hostnameFlag)
case flag.Arg(0) == "http":
app.Http(*discovery)
default:
fmt.Fprintln(os.Stderr, `Usage:
orchestrator --options... [cli|http]See complete list of commands:
orchestrator -c helpFull blown documentation:
orchestrator`)
os.Exit(1)
}}
也就是说, 当我们用以下命令启动orchestrator后
orchestrator -config orchestrator.conf.json -debug http
就会 http.Http -> http.standardHttp -> go logic.ContinuousDiscovery()
ContinuousDiscovery都干了啥
持续发现
// ContinuousDiscovery starts an asynchronuous infinite discovery process where instances are
// periodically investigated and their status captured, and long since unseen instances are
// purged and forgotten.
ContinuousDiscovery启动一个永不停止的异步"发现"过程, 在这个过程中, 实例被周期性地调查并捕获它们的状态, 长期以来不可见的实例被清除和遗忘.
这段注释中 asynchronuous 还拼写错了, 应该是 asynchronous
ContinuousDiscovery 先启动一个协程
func ContinuousDiscovery() {
...
go handleDiscoveryRequests()
handleDiscoveryRequests 在Orchestrator Discover源码分析中介绍过
handleDiscoveryRequests迭代discoveryQueue
channel 并在每个条目上调用DiscoverInstance, 而DiscoverInstance又会调用ReadTopologyInstanceBufferable, 后者会实际连接MySQL实例, 获取各种指标/参数信息, 最终将结果写入database_instance
表
那么discoveryQueue
里的"数据"又是谁放进来的呢?, 有两个地方
- 通过命令行或前端页面手动触发"发现"时(本质是调用orchestrator discover接口), 会将指定instance的
ReplicaKey
和MasterKey
放入discoveryQueue - ContinuousDiscovery 还会创建一个
healthTick
定时器, 周期性(每秒)调用onHealthTick, onHealthTick会取出所有"过期"的instance, 放到discoverQueue中
const HealthPollSeconds = 1
func ContinuousDiscovery() {
...省略部分代码
healthTick := time.Tick(config.HealthPollSeconds * time.Second)
...省略部分代码
for {
select {
case <-healthTick:
go func() {
onHealthTick()
}()
...省略部分代码
}
// onHealthTick handles the actions to take to discover/poll instances
func onHealthTick() {
...省略部分代码
instanceKeys, err := inst.ReadOutdatedInstanceKeys() // 读出过期的实例. 过期的定义是: InstancePollSeconds秒未探测的connectable实例 或 2*InstancePollSeconds秒未探测的连接出现异常(hang)的实例
// avoid any logging unless there's something to be done
if len(instanceKeys) > 0 {
for _, instanceKey := range instanceKeys {
if instanceKey.IsValid() {
discoveryQueue.Push(instanceKey)
}
}
}
那么就是说, 每秒钟(HealthPollSeconds=1), onHealthTick会把所有"过期"的实例放到discoveryQueue
流程图
需要与实例轮询(或大致)相同频率的常规操作
func ContinuousDiscovery() {
...省略部分代码
instancePollTick := time.Tick(instancePollSecondsDuration()) // InstancePollSeconds 默认5秒
...省略部分代码
for {
select {
...省略部分代码
case <-instancePollTick: // 5秒一次
go func() {
// This tick does NOT do instance poll (these are handled by the oversampling discoveryTick)
// But rather should invoke such routinely operations that need to be as (or roughly as) frequent
// as instance poll
if IsLeaderOrActive() {
go inst.UpdateClusterAliases()
go inst.ExpireDowntime()
go injectSeeds(&seedOnce)
}
}()
...省略部分代码
}
看起来都是些不太重要的操作
定时注入伪GTID
const PseudoGTIDIntervalSeconds = 5
func ContinuousDiscovery() {
...省略部分代码
autoPseudoGTIDTick := time.Tick(time.Duration(config.PseudoGTIDIntervalSeconds) * time.Second)
...省略部分代码
for {
select {
...省略部分代码
case <-autoPseudoGTIDTick:
go func() {
if config.Config.AutoPseudoGTID && IsLeader() {
go InjectPseudoGTIDOnWriters()
}
}()
...省略部分代码
}
Pseudo GTID , 不太重要, 现在还会有人不开GTID吗?
护理工作
func ContinuousDiscovery() {
...省略部分代码
caretakingTick := time.Tick(time.Minute)
...省略部分代码
for {
select {
...省略部分代码
case <-caretakingTick:
// Various periodic internal maintenance tasks
go func() {
if IsLeaderOrActive() {
go inst.RecordInstanceCoordinatesHistory()
go inst.ReviewUnseenInstances()
go inst.InjectUnseenMasters()
go inst.ForgetLongUnseenInstances()
go inst.ForgetLongUnseenClusterAliases()
go inst.ForgetUnseenInstancesDifferentlyResolved()
go inst.ForgetExpiredHostnameResolves()
go inst.DeleteInvalidHostnameResolves()
go inst.ResolveUnknownMasterHostnameResolves()
go inst.ExpireMaintenance()
go inst.ExpireCandidateInstances()
go inst.ExpireHostnameUnresolve()
go inst.ExpireClusterDomainName()
go inst.ExpireAudit()
go inst.ExpireMasterPositionEquivalence()
go inst.ExpirePoolInstances()
go inst.FlushNontrivialResolveCacheToDatabase()
go inst.ExpireInjectedPseudoGTID()
go inst.ExpireStaleInstanceBinlogCoordinates()
go process.ExpireNodesHistory()
go process.ExpireAccessTokens()
go process.ExpireAvailableNodes()
go ExpireFailureDetectionHistory()
go ExpireTopologyRecoveryHistory()
go ExpireTopologyRecoveryStepsHistory()
if runCheckAndRecoverOperationsTimeRipe() && IsLeader() {
go SubmitMastersToKvStores("", false)
}
} else {
// Take this opportunity to refresh yourself
go inst.LoadHostnameResolveCache()
}
}()
从方法名字可以看出来, 就是做一些"护理"工作, 如:
- 清理unseened instance, 详见参数: UnseenInstanceForgetHours
- 清理过期审计日志
raft护理工作
func ContinuousDiscovery() {
raftCaretakingTick := time.Tick(10 * time.Minute)
...省略部分代码
for {
select {
...省略部分代码
case <-raftCaretakingTick:
if orcraft.IsRaftEnabled() && orcraft.IsLeader() {
// publishDiscoverMasters will publish to raft a discovery request for all known masters.
// This makes for a best-effort keep-in-sync between raft nodes, where some may have
// inconsistent data due to hosts being forgotten, for example.
go publishDiscoverMasters()
}
如果orchestrator是[[raft模式部署]]的, 并且本节点是leader, 那么leader会发布一个discovery request给每个raft节点, 这些节点会对所有MySQL主库进行discover. 这么做的目的是保持所有raft nodes的数据"同步"
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-o2tkPupR-1652534525767)(https://raw.githubusercontent.com/openark/orchestrator/master/docs/images/orchestrator-deployment-raft.png)]
如上图所示, 三个
orchestrator
组成一个raft cluster, 每个orchestrator
节点使用自己的专用数据库(MySQL
或SQLite
)
orchestrator
节点之间会进行通信.- 只有一个
orchestrator
节点会成为leader.- 所有
orchestrator
节点探测整个MySQL
舰队. 每个MySQL
server都被每个raft成员探测.
保存拓扑快照
如果SnapshotTopologiesIntervalHours值大于0, 那么会每SnapshotTopologiesIntervalHours小时保存database_instance到database_instance_topology_history
func ContinuousDiscovery() {
...省略部分代码
var snapshotTopologiesTick <-chan time.Time
if config.Config.SnapshotTopologiesIntervalHours > 0 {
snapshotTopologiesTick = time.Tick(time.Duration(config.Config.SnapshotTopologiesIntervalHours) * time.Hour)
}
...省略部分代码
for {
select {
..省略部分代码
case <-snapshotTopologiesTick:
go func() {
if IsLeaderOrActive() {
go inst.SnapshotTopologies()
}
}()
}
就是执行insert ignore into database_instance_topology_history select x from database_instance
// SnapshotTopologies records topology graph for all existing topologies
func SnapshotTopologies() error {
writeFunc := func() error {
_, err := db.ExecOrchestrator(`
insert ignore into
database_instance_topology_history (snapshot_unix_timestamp,
hostname, port, master_host, master_port, cluster_name, version)
select
UNIX_TIMESTAMP(NOW()),
hostname, port, master_host, master_port, cluster_name, version
from
database_instance
`,
)
if err != nil {
return log.Errore(err)
}
return nil
}
return ExecDBWriteFunc(writeFunc)
}
recover工作
const RecoveryPollSeconds = 1
func ContinuousDiscovery() {
...省略部分代码
continuousDiscoveryStartTime := time.Now()
checkAndRecoverWaitPeriod := 3 * instancePollSecondsDuration()
...省略部分代码
runCheckAndRecoverOperationsTimeRipe := func() bool {
return time.Since(continuousDiscoveryStartTime) >= checkAndRecoverWaitPeriod
}
...省略部分代码
recoveryTick := time.Tick(time.Duration(config.RecoveryPollSeconds) * time.Second)
for {
select {
case <-recoveryTick:
go func() {
if IsLeaderOrActive() {
go ClearActiveFailureDetections()
go ClearActiveRecoveries()
go ExpireBlockedRecoveries()
go AcknowledgeCrashedRecoveries()
go inst.ExpireInstanceAnalysisChangelog()
go func() {
// This function is non re-entrant (it can only be running once at any point in time)
if atomic.CompareAndSwapInt64(&recoveryEntrance, 0, 1) { // 如果返回true, 说明当时没有运行中的恢复任务
defer atomic.StoreInt64(&recoveryEntrance, 0)
} else { // 否则直接return
return
}
if runCheckAndRecoverOperationsTimeRipe() { // 从开始运行ContinuousDiscovery至今的时间 > (3 * InstancePollSeconds = 15秒) 才可以运行recover
CheckAndRecover(nil, nil, false)
} else {
log.Debugf("Waiting for %+v seconds to pass before running failure detection/recovery", checkAndRecoverWaitPeriod.Seconds())
}
}()
}
}()
从注释// This function is non re-entrant (it can only be running once at any point in time)
可以看出, 同一时间只能有一个恢复任务运行
atomic.CompareAndSwapInt64
在Go语言中,原子包提供lower-level原子内存,这对实现同步算法很有帮助。 Go语言中的CompareAndSwapInt64()函数用于对int64值执行比较和交换操作。此函数在原子包下定义。在这里,您需要导入“sync/atomic”软件包才能使用这些函数。
用法:func CompareAndSwapInt64(addr *int64, old, new int64) (swapped bool)
在这里,addr表示地址,old表示int64值,它是从交换操作返回的旧交换值,而new则是int64新值,它将与旧交换值进行交换。
**返回值:**如果交换完成,则返回true,否则返回false。
恢复机制的入口在CheckAndRecover
CheckAndRecover
CheckAndRecover(nil, nil, false)
CheckAndRecover
首先调用GetReplicationAnalysis 获取分析结果replicationAnalysis
(是一个切片). 后者实际是通过查询database_instance表, 查出所有有问题
的实例信息, 封装成ReplicationAnalysis结构体, 这个结构体中包含实例基础信息(如是否是主库, 是否开启GTID等), Analysis
(即orc定义故障名称, 详见Failure detection scenarios 故障检测场景)和StructureAnalysis
(即拓扑结构的故障列表, 如NotEnoughValidSemiSyncReplicasStructureWarning
等)
当然, GetReplicationAnalysis有可能返回一个空切片, 即代表当前无任何故障
如果GetReplicationAnalysis返回err!=nil, 那么整个CheckAndRecover也会就此退出return error
接着, CheckAndRecover
按随机顺序迭代replicationAnalysis, 对每一个analysisEntry开启协程调用executeCheckAndRecoverFunction
go func() {
_, _, err := executeCheckAndRecoverFunction(analysisEntry, candidateInstanceKey, false, skipProcesses) // 实际参数是 analysisEntry, nil, false, false
log.Errore(err)
}()
executeCheckAndRecoverFunction 函数注释
// executeCheckAndRecoverFunction will choose the correct check & recovery function based on analysis.
// It executes the function synchronuouslysynchronuously拼写错误, 应为synchronously
直译: executeCheckAndRecoverFunction将根据分析选择正确的检查和恢复函数。它同步地执行该功能
executeCheckAndRecoverFunction
executeCheckAndRecoverFunction 首先调用getCheckAndRecoverFunction, 后者根据analysisEntry.Analysis(即orc定义故障名称, 详见Failure detection scenarios 故障检测场景)返回对应的checkAndRecoverFunction
, 以及一个布尔值isActionableRecovery
, 这个值会赋值给analysisEntry.IsActionableRecovery
checkAndRecoverFunction, isActionableRecovery := getCheckAndRecoverFunction(analysisEntry.Analysis, &analysisEntry.AnalyzedInstanceKey)
以本次实验模拟的主库宕机为例, 我们关闭主库后, 主库会先被认为处于UnreachableMaster状态
func getCheckAndRecoverFunction(analysisCode inst.AnalysisCode, analyzedInstanceKey *inst.InstanceKey) (
checkAndRecoverFunction func(analysisEntry inst.ReplicationAnalysis, candidateInstanceKey *inst.InstanceKey, forceInstanceRecovery bool, skipProcesses bool) (recoveryAttempted bool, topologyRecovery *TopologyRecovery, err error),
isActionableRecovery bool,
) {
switch analysisCode {
...省略部分代码
case inst.UnreachableMaster:
return checkAndRecoverGenericProblem, false
...省略部分代码
}
// Right now this is mostly causing noise with no clear action.
// Will revisit this in the future.
// case inst.AllMasterReplicasStale:
// return checkAndRecoverGenericProblem, false
return nil, false
}
于是第一次, 拿到的checkAndRecoverFunction是checkAndRecoverGenericProblem, 这个函数啥也没干, 就是返回fale, nil, nil
// checkAndRecoverGenericProblem is a general-purpose recovery function
func checkAndRecoverGenericProblem(analysisEntry inst.ReplicationAnalysis, candidateInstanceKey *inst.InstanceKey, forceInstanceRecovery bool, skipProcesses bool) (bool, *TopologyRecovery, error) {
return false, nil, nil
}
随后会运行runEmergentOperations
runEmergentOperations(&analysisEntry)
以本次实验模拟的主库宕机为例, 我们关闭主库后, 主库会先被认为处于UnreachableMaster状态
func runEmergentOperations(analysisEntry *inst.ReplicationAnalysis) {
switch analysisEntry.Analysis {
...省略部分代码
case inst.UnreachableMaster:
go emergentlyReadTopologyInstance(&analysisEntry.AnalyzedInstanceKey, analysisEntry.Analysis)
go emergentlyReadTopologyInstanceReplicas(&analysisEntry.AnalyzedInstanceKey, analysisEntry.Analysis)
那么按照代码逻辑, 会运行:
- emergentlyReadTopologyInstance
- emergentlyReadTopologyInstanceReplicas
这两步实际是去连接数据库实例(主库, 和其所有的从库), 获取实例的各项信息(如从库的复制延迟, IO_THREAD状态等)
下面分别展示了上述两个函数的注释:
// Force a re-read of a topology instance; this is done because we need to substantiate a suspicion // that we may have a failover scenario. we want to speed up reading the complete picture. 强制重新读取一个拓扑实例;这样做是因为我们需要证实一个怀疑,即我们可能有一个故障转移的情况。我们希望加快读取完整的图片。 // Force reading of replicas of given instance. This is because we suspect the instance is dead, and want to speed up // detection of replication failure from its replicas. 强制读取给定实例的副本。这是因为我们怀疑该实例已经死亡,并希望加快从其副本中检测复制失败。 从这是可以看出, UnreachableMaster时, orc会立即触发对主从的探测, 目的是加速整个Failover速度, 而不依赖与周期性持续探测
接着, executeCheckAndRecoverFunction运行checkAndRecoverFunction(即checkAndRecoverGenericProblem)
recoveryAttempted, topologyRecovery, err = checkAndRecoverFunction(analysisEntry, candidateInstanceKey, forceInstanceRecovery, skipProcesses)
// 实参为 analysisEntry, nil, false, false
所以这里是recoveryAttempted, topologyRecovery, err就是false, nil .
然后代码判断recoveryAttempted为false时, 直接return了
if !recoveryAttempted {
return recoveryAttempted, topologyRecovery, err
}
于是至此流程就是
那么问题来了, 只要GetReplicationAnalysis分析后一直认为故障处于UnreachableMaster状态, 就会一直处于这个循环. 所以要看一下DeadMaster的判断逻辑是什么.
在官方文档中是这样定义的:
- 主库访问失败
- 所有主库的副本复制失败
这里列出分别列出 UnreachableMaster 和 DeadMaster 代码判断逻辑
} else if a.IsMaster && !a.LastCheckValid && a.CountValidReplicas == a.CountReplicas && a.CountValidReplicatingReplicas == 0 {
a.Analysis = DeadMaster
a.Description = "Master cannot be reached by orchestrator and none of its replicas is replicating"
//
} else if a.IsMaster && !a.LastCheckValid && !a.LastCheckPartialSuccess && a.CountValidReplicas > 0 && a.CountValidReplicatingReplicas > 0 {
// partial success is here to reduce noise
a.Analysis = UnreachableMaster
a.Description = "Master cannot be reached by orchestrator but it has replicating replicas; possibly a network/host issue"
//
} else if a.IsMaster && !a.LastCheckValid && a.LastCheckPartialSuccess && a.CountReplicasFailingToConnectToMaster > 0 && a.CountValidReplicas > 0 && a.CountValidReplicatingReplicas > 0 {
// there's partial success, but also at least one replica is failing to connect to master
a.Analysis = UnreachableMaster
a.Description = "Master cannot be reached by orchestrator but it has replicating replicas; possibly a network/host issue"
//
database_instance重要列含义解读
首先, 上面的a.IsMaster, a.LastCheckValid等属性是GetReplicationAnalysis通过SQL查询backend db的database_instance等表获取的. 所以要说清楚这些判断条件, 就要理解SQL含义, 要理解SQL含义, 就又要先了解database_instance表中几个列的含义:
- last_checked 无论被探测的实例是否可以连接, 都会更新此列值为Now()
- last_seen 只有实例探测正常, 才会更新此列值为Now()
- last_check_partial_success 如果被探测实例至少可以连接并执行select @@global.hostname… 则此列值为1
- last_attempted_check 这个列含义比较复杂. 简单来说, 如果 last_attempted_check <= last_checked 那么这目标实例是正常的, 没有遇到连接hang住的问题
ReplicationAnalysis 属性含义解读
IsMaster 主库(本身没有主库, 也不是MGR成员)
/* To be considered a master, traditional async replication must not be present/valid AND the host should either */
/* not be a replication group member OR be the primary of the replication group */
MIN(master_instance.last_check_partial_success) as last_check_partial_success,
MIN(
(
master_instance.master_host IN ('', '_')
OR master_instance.master_port = 0
OR substr(master_instance.master_host, 1, 2) = '//'
)
AND (
master_instance.replication_group_name = ''
OR master_instance.replication_group_member_role = 'PRIMARY'
)
) AS is_master,
substr(master_instance.master_host, 1, 2) = '//'的含义详见DetachLostReplicasAfterMasterFailover
LastCheckValid 本实例最近一次探测正常
MIN(
master_instance.last_checked <= master_instance.last_seen
and master_instance.last_attempted_check <= master_instance.last_seen + interval ? second
) = 1 AS is_last_check_valid
interval ? 的实际值是
// ValidSecondsFromSeenToLastAttemptedCheck returns the maximum allowed elapsed time// between last_attempted_check to last_checked before we consider the instance as invalid.
func ValidSecondsFromSeenToLastAttemptedCheck() uint {
return config.Config.InstancePollSeconds + config.Config.ReasonableInstanceCheckSeconds
}
5 + 1 = 6s
master_instance.last_checked <= master_instance.last_seen 表示主库探测一切正常, 否则表是探测是无法联机数据库或查询出现错误等
master_instance.last_attempted_check <= master_instance.last_seen + 6s
假设
last_attempted_check = 10:10
last_seen = 10:00
那么这种情况表示主库探测有问题, 可能连接hang住了
两个都为true, true and true就是 1. 然后再和1比较.
LastCheckPartialSuccess 本实例至少可以连接并执行select @@global.hostname…
MIN(master_instance.last_check_partial_success) as last_check_partial_success,
CountReplicas 本实例的从库数量(无论死活)
COUNT(replica_instance.server_id) AS count_replicas,
CountValidReplicas 本实例正常的从库数量(只表示实例正常, 能连接能查询, 但不一定复制正常)
IFNULL(
SUM(
replica_instance.last_checked <= replica_instance.last_seen
),
0
) AS count_valid_replicas,
CountValidReplicatingReplicas 本实例正常且复制状态正常的从库数量
IFNULL(
SUM(
replica_instance.last_checked <= replica_instance.last_seen
AND replica_instance.slave_io_running != 0
AND replica_instance.slave_sql_running != 0
),
0
) AS count_valid_replicating_replicas,
CountReplicasFailingToConnectToMaster 本实例的, 自身正常(可连接可查询), IO线程处于连接异常, SQL线程正常的从库数量
IFNULL(
SUM(
replica_instance.last_checked <= replica_instance.last_seen
AND replica_instance.slave_io_running = 0
AND replica_instance.last_io_error like '%%error %%connecting to master%%'
AND replica_instance.slave_sql_running = 1
),
0
) AS count_replicas_failing_to_connect_to_master,
再看 UnreachableMaster 和 DeadMaster
} else if a.IsMaster && !a.LastCheckValid && a.CountValidReplicas == a.CountReplicas && a.CountValidReplicatingReplicas == 0 {
a.Analysis = DeadMaster
a.Description = "Master cannot be reached by orchestrator and none of its replicas is replicating"
//
本实例是主库(本身没有主库, 也不是MGR成员) && 本实例最近一次探测异常 && 本实例正常的从库数量(只表示实例正常, 能连接能查询, 但不一定复制正常) == 本实例的从库数量(无论死活) && 本实例正常且复制状态正常的从库数量为0
} else if a.IsMaster && !a.LastCheckValid && !a.LastCheckPartialSuccess && a.CountValidReplicas > 0 && a.CountValidReplicatingReplicas > 0 {
// partial success is here to reduce noise
a.Analysis = UnreachableMaster
a.Description = "Master cannot be reached by orchestrator but it has replicating replicas; possibly a network/host issue"
//
本实例是主库(本身没有主库, 也不是MGR成员) && 本实例最近一次探测异常 && 本实例无法连接 && 本实例正常的从库数量(只表示实例正常, 能连接能查询, 但不一定复制正常) > 0 && 本实例正常且复制状态正常的从库数量 > 0
} else if a.IsMaster && !a.LastCheckValid && a.LastCheckPartialSuccess && a.CountReplicasFailingToConnectToMaster > 0 && a.CountValidReplicas > 0 && a.CountValidReplicatingReplicas > 0 {
// there's partial success, but also at least one replica is failing to connect to master
a.Analysis = UnreachableMaster
a.Description = "Master cannot be reached by orchestrator but it has replicating replicas; possibly a network/host issue"
//
本实例是主库(本身没有主库, 也不是MGR成员) && 本实例最近一次探测异常 && 本实例无法连接 && 本实例的, 自身正常(可连接可查询), IO线程处于连接异常, SQL线程正常的从库数量 > 0 && 本实例正常且复制状态正常的从库数量 > 0
由此可以看出, Master宕机后的最初一段时间内, orchestrator已经无法连接Master, 但是并非所有从库都意识到主库已经宕机, IO线程可能还是处于RUNNING状态(这与slave_net_timeout
有关, Orchestrator官方文档也有描述) . 所以在这段时间内, orchestrator认为Master处于UnreachableMaster 状态, 通过getCheckAndRecoverFunction获取的就永远是checkAndRecoverGenericProblem(也就是啥都不干, 直接return)
直到所有从库复制状态都出现异常, orchestrator才会认为Master处于DeadMaster状态. 那么此后getCheckAndRecoverFunction会返回checkAndRecoverDeadMaster, 而这才是Failover的真正开始, 欲知后事如何, 请看Orchestrator Failover过程源码分析-II