BP 神经网络在化妆品配方优化中的应用

BP 神经网络在化妆品配方优化中的应用

摘要: 本文深入探讨了 BP 神经网络在化妆品配方优化领域的应用。首先介绍了化妆品配方优化的重要性以及传统优化方法的局限性。详细阐述了 BP 神经网络的基本原理、结构和训练算法。通过具体的代码示例,展示了如何利用 BP 神经网络对化妆品的功效性、稳定性和安全性等方面进行配方优化,包括数据预处理、网络构建、模型训练与评估等关键环节。分析了该应用的优势与挑战,并对其未来发展前景进行了展望,旨在为化妆品行业提供一种高效、精准的配方优化方法,推动化妆品研发的创新与发展。

一、引言

化妆品市场竞争日益激烈,消费者对于化妆品的功效、质量和安全性提出了更高的要求。化妆品配方作为决定产品性能的关键因素,其优化过程至关重要。然而,化妆品配方涉及多种原料的组合,原料之间的相互作用以及它们对产品性能的影响呈现出复杂的非线性关系。传统的化妆品配方优化方法,如经验试错法、简单的线性回归分析等,效率低下且难以准确把握这些复杂关系,往往需要耗费大量的时间、人力和物力资源。BP 神经网络作为一种强大的机器学习算法,具有出色的非线性映射能力和自学习能力,能够从大量的配方数据中自动提取特征和规律,为化妆品配方优化提供了新的思路和有效的技术手段,有望显著提高配方优化的效率和质量。

二、BP 神经网络原理

BP 神经网络是一种多层前馈神经网络,主要由输入层、隐藏层和输出层组成。各层神经元之间通过权重连接,信息从输入层经隐藏层传递到输出层。在训练过程中,基于反向传播算法,首先进行前向传播计算网络输出与实际输出的误差,然后将误差沿反向传播路径逐步分摊到各层神经元,依据梯度下降法调整神经元之间的连接权重,以最小化预测误差,直至达到预设的训练停止条件,如达到最大训练次数或误差小于设定阈值。

以下是一个简单的 BP 神经网络的 Python 代码实现框架:

import numpy as np

# 定义激活函数(sigmoid 函数)
def sigmoid(x):
    return 1 / (1 + np.exp(-x))

# 定义激活函数的导数
def sigmoid_derivative(x):
    return x * (1 - x)

# BP 神经网络类
class BPNN:
    def __init__(self, input_size, hidden_size, output_size):
        # 初始化输入层到隐藏层的权重
        self.weights1 = np.random.randn(input_size, hidden_size)
        # 初始化隐藏层到输出层的权重
        self.weights2 = np.random.randn(hidden_size, output_size)
        # 初始化隐藏层的偏置
        self.bias1 = np.random.randn(1, hidden_size)
        # 初始化输出层的偏置
        self.bias2 = np.random.randn(1, output_size)

    def forward(self, X):
        # 计算隐藏层的输入
        self.z1 = np.dot(X, self.weights1) + self.bias1
        # 计算隐藏层的输出
        self.a1 = sigmoid(self.z1)
        # 计算输出层的输入
        self.z2 = np.dot(self.a1, self.weights2) + self.bias2
        # 计算输出层的输出
        self.a2 = sigmoid(self.z2)
        return self.a2

    def backward(self, X, y, learning_rate):
        # 计算输出层的误差
        output_error = y - self.a2
        # 计算输出层的梯度
        output_delta = output_error * sigmoid_derivative(self.a2)

        # 计算隐藏层的误差
        hidden_error = np.dot(output_delta, self.weights2.T)
        # 计算隐藏层的梯度
        hidden_delta = hidden_error * sigmoid_derivative(self.a1)

        # 更新隐藏层到输出层的权重
        self.weights2 += learning_rate * np.dot(self.a1.T, output_delta)
        # 更新输出层的偏置
        self.bias2 += learning_rate * np.sum(output_delta, axis=0, keepdims=True)
        # 更新输入层到隐藏层的权重
        self.weights1 += learning_rate * np.dot(X.T, hidden_delta)
        # 更新隐藏层的偏置
        self.bias1 += learning_rate * np.sum(hidden_delta, axis=0, keepdims=True)

    def train(self, X, y, epochs, learning_rate):
        for epoch in range(epochs):
            # 前向传播
            output = self.forward(X)
            # 反向传播
            self.backward(X, y, learning_rate)

三、BP 神经网络在化妆品配方优化中的应用

(一)功效性优化

  1. 数据预处理
    • 数据收集与整理:收集化妆品在不同配方下的功效测试数据,例如美白化妆品的美白效果测试数据(如黑色素含量降低值)、保湿化妆品的保湿能力测试数据(如皮肤水分含量增加值)等,以及对应的配方成分信息,包括各种活性成分、辅料的种类和含量。将这些数据整理成结构化的数据集,每一行代表一种化妆品配方及其功效测试结果。
import pandas as pd

# 读取化妆品功效数据(假设数据已存储在 CSV 文件中)
cosmetic_efficacy_data = pd.read_csv('cosmetic_efficacy.csv')
  • 数据清洗与缺失值处理:对收集到的数据进行清洗,去除异常值和明显错误的数据点。对于缺失值,可以采用多种方法处理,如均值填充、中位数填充或使用其他合适的插值方法。
# 去除异常值(这里简单示例,可根据具体数据特点采用更合适的方法)
def detect_outliers(data):
    mean = np.mean(data)
    std = np.std(data)
    lower_bound = mean - 3 * std
    upper_bound = mean + 3 * std
    outliers = []
    for value in data:
        if value < lower_bound or value > upper_bound:
            outliers.append(value)
    return outliers

# 处理异常值(这里简单删除异常值)
for column in cosmetic_efficacy_data.columns:
    outliers = detect_outliers(cosmetic_efficacy_data[column])
    cosmetic_efficacy_data = cosmetic_efficacy_data[~cosmetic_efficacy_data[column].isin(outliers)]

# 处理缺失值(这里使用均值填充)
for column in cosmetic_efficacy_data.columns:
    if cosmetic_efficacy_data[column].isnull().sum() > 0:
        mean_value = cosmetic_efficacy_data[column].mean()
        cosmetic_efficacy_data[column].fillna(mean_value, inplace=True)
  • 数据归一化:将不同特征的数据进行归一化处理,使它们在同一数量级上,便于神经网络的训练。通常可以采用 Z-score 标准化方法或 Min-Max 标准化方法。
def z_score_standardize(data):
    mean = np.mean(data)
    std = np.std(data)
    return (data - mean) / std

# 对化妆品功效数据进行 Z-score 标准化
standardized_cosmetic_efficacy_data = cosmetic_efficacy_data.apply(z_score_standardize)
  • 数据划分:将处理后的数据划分为训练集、验证集和测试集。一般按照 70%、15%、15% 的比例划分。
# 划分数据集
train_size = int(0.7 * len(standardized_cosmetic_efficacy_data))
val_size = int(0.15 * len(standardized_cosmetic_efficacy_data))
test_size = len(standardized_cosmetic_efficacy_data) - train_size - val_size

train_data = standardized_cosmetic_efficacy_data[:train_size]
val_data = standardized_cosmetic_efficacy_data[train_size:train_size + val_size]
test_data = standardized_cosmetic_efficacy_data[train_size + val_size:]
  1. 网络构建与训练:根据化妆品功效指标的数量确定输出层节点数,例如,如果要优化美白和保湿两种功效,则输出层节点数为 2。输入层节点数取决于配方成分的数量。隐藏层的层数和节点数可通过实验调整,一般先尝试一层隐藏层,节点数可根据经验公式或多次实验确定。
# 假设经过数据预处理后,输入数据 X 的形状为 (num_samples, input_size)
# 输出数据 y 为化妆品的功效指标,形状为 (num_samples, 2)

# 创建 BP 神经网络实例
input_size = X.shape[1]
hidden_size = 128
output_size = 2
bpnn_cosmetic_efficacy_optimizer = BPNN(input_size, hidden_size, output_size)

# 训练网络
epochs = 1000
learning_rate = 0.01
bpnn_cosmetic_efficacy_optimizer.train(X_train, y_train, epochs, learning_rate)

在训练过程中,可以采用早停法(Early Stopping)来防止过拟合,即当验证集上的损失不再下降时,停止训练。

# 早停法实现
best_val_loss = float('inf')
patience = 10  # 容忍次数
counter = 0

for epoch in range(epochs):
    # 训练网络
    bpnn_cosmetic_efficacy_optimizer.train(X_train, y_train, 1, learning_rate)

    # 在验证集上计算损失
    val_output = bpnn_cosmetic_efficacy_optimizer.forward(X_val)
    val_loss = np.mean((val_output - y_val) ** 2)

    if val_loss < best_val_loss:
        best_val_loss = val_loss
        counter = 0
    else:
        counter += 1
        if counter >= patience:
            break
  1. 模型评估:使用测试集对训练好的模型进行评估,评估指标可以采用均方误差(MSE)、平均绝对误差(MAE)等。
def mean_squared_error(y_pred, y_true):
    return np.mean((y_pred - y_true) ** 2)

def mean_absolute_error(y_pred, y_true):
    return np.mean(np.abs(y_pred - y_true))

# 在测试集上进行预测
test_output = bpnn_cosmetic_efficacy_optimizer.forward(X_test)

# 计算均方误差
mse = mean_squared_error(test_output, y_test)
print("均方误差:", mse)

# 计算平均绝对误差
mae = mean_absolute_error(test_output, y_test)
print("平均绝对误差:", mae)

(二)稳定性优化

  1. 数据预处理
    • 数据收集与整理:收集化妆品在不同配方下的稳定性测试数据,如在不同温度、光照条件下的产品外观变化、成分含量变化等,以及对应的配方成分信息。将这些数据整理成数据集,每一行代表一种化妆品配方及其稳定性测试结果。
import pandas as pd

# 读取化妆品稳定性数据(假设数据已存储在 CSV 文件中)
cosmetic_stability_data = pd.read_csv('cosmetic_stability.csv')
  • 数据清洗与异常值处理:对数据进行清洗,去除明显错误或不合理的数据点。例如,对于在稳定性测试中出现物理状态异常变化(如原本为乳液的产品变成了固体或分层严重)的数据,需要进行检查和处理。
# 处理异常值(这里简单示例,可根据具体数据特点采用更合适的方法)
def handle_outliers(data):
    # 假设产品的 pH 值正常范围在 4 - 8 之间
    data = data[(data['pH'] >= 4) & (data['pH'] <= 8)]
    return data

cosmetic_stability_data = handle_outliers(cosmetic_stability_data)
  • 数据编码与转换:对于一些非数值型的数据,如防腐剂的种类(如尼泊金酯类、苯氧乙醇等),需要进行编码转换为数值型数据。例如,可以采用独热编码(One-Hot Encoding)方法。
from sklearn.preprocessing import OneHotEncoder

# 对防腐剂种类进行独热编码
encoder = OneHotEncoder()
encoded_preservative = encoder.fit_transform(cosmetic_stability_data[['preservative_type']]).toarray()
# 将编码后的数据替换原数据中的防腐剂种类列
cosmetic_stability_data.drop('preservative_type', axis=1, inplace=True)
cosmetic_stability_data = pd.concat([cosmetic_stability_data, pd.DataFrame(encoded_preservative)], axis=1)
  • 数据归一化:对数据进行归一化处理,使数据在合适的范围内,便于神经网络训练。
def min_max_normalize(data):
    min_val = np.min(data)
    max_val = np.max(data)
    return (data - min_val) / (max_val - min_val)

# 对化妆品稳定性数据进行归一化
normalized_cosmetic_stability_data = cosmetic_stability_data.apply(min_max_normalize)
  • 数据划分:将处理后的数据划分为训练集、验证集和测试集,例如按照 80%、10%、10% 的比例划分。
# 划分数据集
train_size = int(0.8 * len(normalized_cosmetic_stability_data))
val_size = int(0.1 * len(normalized_cosmetic_stability_data))
test_size = len(normalized_cosmetic_stability_data) - train_size - val_size

train_data = normalized_cosmetic_stability_data[:train_size]
val_data = normalized_cosmetic_stability_data[train_size:train_size + val_size]
test_data = normalized_cosmetic_stability_data[train_size + val_size:]
  1. 网络构建与训练:输出层节点数根据化妆品稳定性评估指标的数量确定,例如,如果要评估产品在高温、低温和光照条件下的稳定性,则输出层节点数为 3。输入层节点数根据配方成分和其他相关因素的维度确定。隐藏层的设置可通过实验调整。
# 假设经过数据预处理后,输入数据 X 的形状为 (num_samples, input_size)
# 输出数据 y 为化妆品的稳定性指标,形状为 (num_samples, 3)

# 创建 BP 神经网络实例
input_size = X.shape[1]
hidden_size = 64
output_size = 3
bpnn_cosmetic_stability_optimizer = BPNN(input_size, hidden_size, output_size)

# 训练网络
epochs = 800
learning_rate = 0.005
bpnn_cosmetic_stability_optimizer.train(X_train, y_train, epochs, learning_rate)

同样可以使用早停法防止过拟合。

  1. 结果评估:使用测试集对模型进行评估,评估指标可以采用均方误差(MSE)、平均绝对误差(MAE)等,还可以通过可视化的方式对比预测结果和实际测试结果,更直观地分析模型的性能。
# 在测试集上进行预测
test_output = bpnn_cosmetic_stability_optimizer.forward(X_test)

# 计算均方误差
mse = mean_squared_error(test_output, y_test)
print("均方误差:", mse)

# 计算平均绝对误差
mae = mean_absolute_error(test_output, y_test)
print("平均绝对误差:", mae)

(三)安全性优化

  1. 数据预处理
    • 数据收集与整理:收集化妆品在不同配方下的安全性测试数据,如皮肤刺激性测试结果、过敏反应发生率等,以及对应的配方成分信息。将这些数据整理成数据集,每一行代表一种化妆品配方及其安全性测试结果。
import pandas as pd

# 读取化妆品安全性数据(假设数据已存储在 CSV 文件中)
cosmetic_safety_data = pd.read_csv('cosmetic_safety.csv')
  • 数据清洗与缺失值处理:对数据进行清洗,去除异常值和缺失值。对于缺失值,可以采用合理的估计方法或根据数据的分布情况进行填充。
# 处理缺失值(这里使用线性插值)
cosmetic_safety_data.interpolate(method='linear', inplace=True)

# 去除异常值(这里简单示例,可根据具体数据特点采用更合适的方法)
def remove_outliers(data):
    # 假设皮肤刺激性评分正常范围在 0 - 5 之间
    data = data[(data['irritation_score'] >= 0) & (data['irritation_score'] <= 5)]
    return data

cosmetic_safety_data = remove_outliers(cosmetic_safety_data)
  • 数据标准化:对数据进行标准化处理,使数据符合正态分布,便于神经网络训练。
def standardize_data(data):
    mean = np.mean(data)
    std = np.std(data)
    return (data - mean) / std

# 对化妆品安全性数据进行标准化
standardized_cosmetic_safety_data = cosmetic_safety_data.apply(standardize_data)
  • 数据划分:将处理后的数据划分为训练集、验证集和测试集,例如按照 75%、10%、15% 的比例划分。
# 划分数据集
train_size = int(0.75 * len(standardized_cosmetic_safety_data))
val_size = int(0.1 * len(standardized_cosmetic_safety_data))
test_size = len(standardized_cosmetic_safety_data) - train_size - val_size

train_data = standardized_cosmetic_safety_data[:train_size]
val_data = standardized_cosmetic_safety_data[train_size:train_size + val_size]
test_data = standardized_cosmetic_safety_data[train_size + val_size:]

# 分离特征和标签
X_train = train_data.drop('safety_label', axis=1).values
y_train = train_data['safety_label'].values
X_val = val_data.drop('safety_label', axis=1).values
y_val = val_data['safety_label'].values
X_test = test_data.drop('safety_label', axis=1).values
y_test = test_data['safety_label'].values
  1. 网络构建与训练
    根据安全性指标的类别数量确定输出层节点数,例如,如果将安全性分为低风险、中风险和高风险三个类别,通过独热编码表示,那么输出层节点数为 3。输入层节点数取决于化妆品配方中成分的数量以及其他可能影响安全性的因素,如生产工艺参数等(如果有相关数据)。隐藏层的层数和节点数可通过实验调整,先尝试一层隐藏层,节点数根据经验公式或多次试验来确定。
# 创建 BP 神经网络实例
input_size = X_train.shape[1]
hidden_size = 32
num_classes = len(np.unique(y_train))
bpnn_cosmetic_safety_optimizer = BPNN(input_size, hidden_size, num_classes)

# 训练网络
epochs = 600
learning_rate = 0.01
bpnn_cosmetic_safety_optimizer.train(X_train, y_train.reshape(-1, 1), epochs, learning_rate)

在训练过程中,采用早停法(Early Stopping)防止过拟合,即当验证集上的损失不再下降时,停止训练。

# 早停法实现
best_val_loss = float('inf')
patience = 10  # 容忍次数
counter = 0

for epoch in range(epochs):
    # 训练网络
    bpnn_cosmetic_safety_optimizer.train(X_train, y_train.reshape(-1, 1), 1, learning_rate)

    # 在验证集上计算损失
    val_output = bpnn_cosmetic_safety_optimizer.forward(X_val)
    val_loss = np.mean((val_output - y_val.reshape(-1, 1)) ** 2)

    if val_loss < best_val_loss:
        best_val_loss = val_loss
        counter = 0
    else:
        counter += 1
        if counter >= patience:
            break
  1. 模型评估
    使用测试集对训练好的模型进行评估,评估指标可以采用准确率(Accuracy)、精确率(Precision)、召回率(Recall)、F1 值等。
def accuracy(y_pred, y_true):
    return np.sum(y_pred == y_true) / len(y_true)

def precision(y_pred, y_true):
    true_positive = np.sum((y_pred == 1) & (y_true == 1))
    predicted_positive = np.sum(y_pred == 1)
    return true_positive / predicted_positive if predicted_positive > 0 else 0

def recall(y_pred, y_true):
    true_positive = np.sum((y_pred == 1) & (y_true == 1))
    actual_positive = np.sum(y_true == 1)
    return true_positive / actual_positive if actual_positive > 0 else 0

def f1_score(y_pred, y_true):
    prec = precision(y_pred, y_true)
    rec = recall(y_pred, y_true)
    return 2 * prec * rec / (prec + rec) if (prec + rec) > 0 else 0

# 在测试集上进行预测
test_output = bpnn_cosmetic_safety_optimizer.forward(X_test)
# 将预测结果转换为类别标签(假设使用 argmax 函数获取最大值所在的索引作为类别)
y_pred_labels = np.argmax(test_output, axis=1)
y_true_labels = y_test

# 计算准确率
acc = accuracy(y_pred_labels, y_true_labels)
print("准确率:", acc)

# 计算精确率
prec = precision(y_pred_labels, y_true_labels)
print("精确率:", prec)

# 计算召回率
rec = recall(y_pred_labels, y_true_labels)
print("召回率:", rec)

# 计算 F1 值
f1 = f1_score(y_pred_labels, y_true_labels)
print("F1 值:", f1)
  1. 配方优化应用
    通过训练好的 BP 神经网络模型,可以对新的化妆品配方进行安全性预测和优化。首先,根据待优化的配方成分信息,按照与训练数据相同的预处理步骤进行处理,将其转化为模型可接受的输入格式。然后,将处理后的配方数据输入到模型中,得到安全性预测结果。根据预测结果,可以调整配方中的成分比例或种类,再次进行预测,反复迭代这个过程,直到达到满意的安全性指标。
# 假设我们有一个新的化妆品配方需要评估和优化
new_cosmetic_formula = pd.DataFrame({
    'ingredient1': [0.1],
    'ingredient2': [0.05],
    #... 其他成分及含量
})

# 对新配方进行数据预处理(与训练数据预处理步骤相同)
new_cosmetic_formula = new_cosmetic_formula.apply(z_score_standardize)
X_new = new_cosmetic_formula.values

# 使用模型进行预测
predicted_safety = bpnn_cosmetic_safety_optimizer.forward(X_new)
print("预测的安全性:", predicted_safety)

# 根据预测结果进行配方调整(这里简单示例,实际情况可能更复杂)
if predicted_safety[0][0] < 0.5:  # 假设安全性指标不佳,调整成分比例
    new_cosmetic_formula['ingredient1'] *= 0.9
    new_cosmetic_formula['ingredient2'] *= 1.1
    # 重新预处理和预测
    new_cosmetic_formula = new_cosmetic_formula.apply(z_score_standardize)
    X_new = new_cosmetic_formula.values
    predicted_safety = bpnn_cosmetic_safety_optimizer.forward(X_new)
    print("调整后预测的安全性:", predicted_safety)

四、应用优势与局限性

(一)优势

  1. 处理复杂非线性关系能力强
    化妆品配方中各种成分之间以及成分与产品性能(功效、稳定性、安全性等)之间存在高度复杂的非线性关系。BP 神经网络通过其多层神经元结构和非线性激活函数,能够精准地捕捉这些复杂的内在联系,从而为配方优化提供更准确的指导。例如,某些活性成分在低浓度时可能对产品功效提升不明显,但达到一定阈值后,功效会显著增强,同时可能对稳定性产生不同的影响,BP 神经网络可以很好地学习和模拟这种复杂的变化规律。

  2. 自学习与自适应能力
    随着化妆品原料市场的不断发展和消费者需求的持续变化,新的原料和配方不断涌现。BP 神经网络具有自学习能力,能够根据新的配方数据不断调整网络权重,适应不断变化的配方优化需求。这使得它在面对新型化妆品配方或特殊配方要求时,依然能够提供较为有效的优化建议,而不需要完全重新构建优化模型。

  3. 多因素综合考虑
    可以同时整合多种影响化妆品配方性能的因素,如原料的种类、含量、纯度,生产工艺参数(如温度、搅拌速度等)以及产品的包装形式等信息,进行综合分析和配方优化。这种多因素融合的能力避免了单一因素分析的局限性,使配方优化更加全面和科学,能够更好地平衡化妆品的各项性能指标,满足市场对高品质化妆品的需求。

(二)局限性

  1. 对数据的依赖性高
    BP 神经网络的性能在很大程度上依赖于训练数据的质量和数量。为了使网络能够学习到准确的配方优化模型,需要大量的、具有代表性的化妆品配方数据,涵盖各种不同的原料组合、含量范围以及对应的性能测试结果。然而,在实际应用中,收集全面且高质量的数据可能存在一定困难,尤其是对于一些新型原料或特殊配方,数据的稀缺可能导致模型的预测准确性受到影响,出现过拟合或欠拟合等问题。

  2. 模型解释性较差
    作为一种黑箱模型,BP 神经网络内部的权重和神经元之间的复杂运算过程难以直观地解释和理解。在化妆品配方优化领域,研发人员通常希望能够深入了解配方优化结果的依据和原理,以便对优化结果进行评估和进一步改进,使其更符合化妆品的研发理念和市场需求。但由于 BP 神经网络的低解释性,使得他们难以从模型中获取有意义的配方设计信息,这在一定程度上限制了其在实际研发流程中的应用和推广。

  3. 计算资源需求较大
    当处理大规模的化妆品配方数据和复杂的网络结构时,BP 神经网络的训练过程需要消耗大量的计算资源和时间。特别是在对网络进行多次调优和超参数搜索时,计算开销会显著增加。这对于一些计算资源有限的化妆品企业或研发机构来说,可能会成为应用 BP 神经网络进行配方优化的障碍,需要在硬件设备和计算时间成本上进行额外的投入。

五、优化与改进方向

(一)改进网络结构

  • 增加网络深度和宽度
    尝试增加隐藏层的层数或每层的节点数,但要注意避免过拟合。可以使用正则化技术(如 L1 或 L2 正则化)来平衡模型的复杂度。
from keras.models import Sequential
from keras.layers import Dense, Dropout
from keras.regularizers import l2


def build_deeper_wider_model(input_size, output_size):
    model = Sequential()
    model.add(Dense(128, input_dim=input_size, activation='relu', kernel_regularizer=l2(0.01)))
    model.add(Dropout(0.2))  # 防止过拟合
    model.add(Dense(256, activation='relu', kernel_regularizer=l2(0.01)))
    model.add(Dropout(0.2))
    model.add(Dense(output_size, activation='linear'))
    model.compile(optimizer='adam', loss='mse')
    return model


# 构建改进后的模型
deeper_wider_model = build_deeper_wider_model(input_size, output_size)
deeper_wider_model.fit(X_train, y_train, epochs=epochs, batch_size=32, validation_data=(X_val, y_val))
  • 使用卷积神经网络(CNN)或循环神经网络(RNN)结构
    对于具有空间或时间序列特征的数据,如化妆品配方中某些成分的分布模式(可看作空间特征)或配方随时间的演变数据(可看作时间序列特征),可以考虑使用 CNN 或 RNN 结构,以更好地捕捉数据中的特征。
from keras.layers import Conv2D, MaxPooling2D, Flatten


def build_cnn_model(input_shape, output_size):
    model = Sequential()
    model.add(Conv2D(32, (3, 3), activation='relu', input_shape=input_shape))
    model.add(MaxPooling2D((2, 2)))
    model.add(Conv2D(64, (3, 3), activation='relu'))
    model.add(MaxPooling2D((2, 2)))
    model.add(Conv2D(64, (3, 3), activation='relu'))
    model.add(Flatten())
    model.add(Dense(64, activation='relu'))
    model.add(Dense(output_size, activation='linear'))
    model.compile(optimizer='adam', loss='mse')
    return model


# 假设输入数据具有图像特征,将其转换为相应的形状
input_shape = (X_train.shape[1], 1, 1)  # 这里仅为示例,根据实际情况调整
cnn_model = build_cnn_model(input_shape, output_size)
cnn_model.fit(X_train.reshape(X_train.shape[0], X_train.shape[1], 1, 1), y_train, epochs=epochs, batch_size=32, validation_data=(X_val.reshape(X_val.shape[0], X_val.shape[1], 1, 1), y_val))

(二)优化数据处理

  • 数据增强
    对于数据量较小的情况,可以采用数据增强技术,如生成合成数据或对现有数据进行随机变换,以扩充数据集。
def data_augmentation(X, y):
    augmented_X = []
    augmented_y = []
    for i in range(len(X)):
        # 简单示例:添加随机噪声作为数据增强
        noise = np.random.normal(0, 0.1, X[i].shape)
        augmented_X.append(X[i] + noise)
        augmented_y.append(y[i])
    return np.array(augmented_X), np.array(augmented_y)


X_augmented, y_augmented = data_augmentation(X_train, y_train)
bpnn_cosmetic_safety_optimizer.train(np.vstack((X_train, X_augmented)), np.vstack((y_train, y_augmented)), epochs, learning_rate)
  • 特征工程
    深入挖掘化妆品配方数据中的潜在特征,例如通过主成分分析(PCA)等方法对高维数据进行降维处理,提取关键特征,减少数据的冗余信息,同时提高模型的训练效率和泛化能力。
from sklearn.decomposition import PCA

# 对训练数据进行 PCA 降维
pca = PCA(n_components=0.95)  # 保留 95% 的方差信息
X_train_pca = pca.fit_transform(X_train)
X_val_pca = pca.transform(X_val)
X_test_pca = pca.transform(X_test)

# 使用降维后的数据重新训练模型
bpnn_cosmetic_safety_optimizer = BPNN(X_train_pca.shape[1], hidden_size, output_size)
bpnn_cosmetic_safety_optimizer.train(X_train_pca, y_train, epochs, learning_rate)

(三)超参数优化

  • 使用网格搜索或随机搜索
    对学习率、隐藏层节点数、层数、正则化参数等超参数进行系统的搜索,以找到最优的超参数组合,提高模型性能。
from sklearn.model_selection import GridSearchCV
from keras.wrappers.scikit_learn import KerasRegressor


def create_model(learning_rate=0.01, hidden_size=32):
    model = Sequential()
    model.add(Dense(hidden_size, input_dim=input_size, activation='relu'))
    model.add(Dense(output_size, activation='linear'))
    model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=learning_rate), loss='mse')
    return model


model = KerasRegressor(build_fn=create_model)
param_grid = {'learning_rate': [0.001, 0.01, 0.1], 'hidden_size': [32, 64, 128]}
grid = GridSearchCV(estimator=model, param_grid=param_grid, n_jobs=-1, cv=3)
grid_result = grid.fit(X_train, y_train)
print("最优参数:", grid_result.best_params_)

六、结论

BP 神经网络在化妆品配方优化中展现出了独特的优势和潜力,通过对功效性、稳定性和安全性等方面的配方优化应用,能够为化妆品研发过程提供较为准确的配方调整方向,有助于提高化妆品的品质和市场竞争力,满足消费者对于化妆品日益多样化和高品质的需求。然而,其应用也面临着一些挑战,如数据依赖、模型解释性和计算资源需求等问题。通过不断优化网络结构、改进数据处理方法和进行超参数优化等措施,可以在一定程度上克服这些局限性,进一步提升 BP 神经网络在化妆品配方优化领域的性能和实用性。随着人工智能技术的不断发展和化妆品行业科技创新的加速,BP 神经网络有望在化妆品研发领域发挥更加重要的作用,为化妆品配方师和企业提供更加智能化、精准化的配方设计解决方案,推动化妆品行业向更高水平的创新和发展迈进。同时,未来的研究还可以探索将 BP 神经网络与其他先进的机器学习技术或化妆品专业知识相结合,开发出更加高效、智能的化妆品配方优化工具,以适应不断变化的市场需求和消费者偏好。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

fanxbl957

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值