一、人脸识别技术综述
人脸识别技术作为一种重要的生物识别技术,在当今社会中具有举足轻重的地位。它广泛应用于各个领域,如金融领域的实名认证、安保领域的门禁系统、通行领域的火车站和地铁站检票、泛娱乐领域的美颜相机和短视频特效处理、公安和司法领域的逃犯追捕和服刑人员管理、自助服务设备以及考勤和会务等。
人脸识别技术的发展历程漫长而曲折。早在 20 世纪 50 年代,认知科学家就开始对其进行研究。20 世纪 60 年代,工程化应用研究正式开启,主要利用人脸的几何结构进行辨识。到了 90 年代,“特征脸” 方法将主成分分析和统计特征技术引入人脸识别,取得了重大进步,随后 Fisherface 方法进一步发展了这一思路。21 世纪的前十年,随着机器学习理论的发展,各种新的算法如遗传算法、支持向量机、boosting、流形学习以及核方法等被应用于人脸识别。
人脸识别技术的重要性不言而喻。它不仅为人们的生活带来了便利,提高了安全性和效率,还在推动各个行业的发展中发挥着重要作用。随着技术的不断进步,人脸识别技术的应用领域还将不断拓展,为社会的发展做出更大的贡献。
二、传统人脸识别技术
(一)Eigenfaces(特征脸)
Eigenfaces 技术是一种基于主成分分析(PCA)的人脸识别方法。其原理是将人脸图像看作高维向量,通过 PCA 找到一组正交基向量,即特征脸,这些特征脸能够最大程度地保留原始图像的信息,同时将图像从高维空间投影到低维空间,提取主要特征进行识别。
以下是使用 OpenCV 实现 Eigenfaces 的代码示例:
import cv2 import numpy as np # 创建一个空列表用于存储图像 images = [] # 读入图像并调整大小添加到列表中 images.append(cv2.resize(cv2.imread('agou1.png',0), (500, 500))) images.append(cv2.resize(cv2.imread('agou2.png',0), (500, 500))) images.append(cv2.resize(cv2.imread('dingzhen1.png',0), (500, 500))) images.append(cv2.resize(cv2.imread('dingzhen2.png',0), (500, 500))) # 创建标签列表 labels = [0, 0, 1] # 读入预测图像并调整大小 predict_image = cv2.imread('dingzhen3.png',0) resize_image = cv2.resize(predict_image,(500, 500)) # 创建 EigenFace 人脸特征识别器对象并训练 recongnzer = cv2.face.EigenFaceRecognizer_create() recongnzer.train(images, np.array(labels)) # 进行人脸识别并返回标签和置信度 label, confidence = recongnzer.predict(resize_image) # 打印识别结果 print('对应的标签label:', label) name = {0: 'agou',1: 'dingzhen'} print('这个人是:', name[label]) print('置信度为:', confidence) |
这段代码首先读取多个图像并调整大小,创建标签列表对应图像。然后使用 OpenCV 的 EigenFaceRecognizer_create 函数创建特征脸识别器对象,通过训练图像和标签进行训练。最后使用训练好的识别器对预测图像进行识别,输出识别结果和置信度。
(二)Fisherfaces(费舍尔脸)
Fisherfaces 基于线性判别分析(LDA)进行人脸识别。其目的是找到一个投影方向,使得类内方差最小、类间方差最大。在低维表示下,将训练样本投影到一条直线上,让投影后的点满足同类间的点尽可能地靠近,异类间的点尽可能地远离。
代码实现如下:
import cv2 import numpy as np # 读入图像并调整大小 images = [] ima = cv2.imread('img/1.png', cv2.IMREAD_GRAYSCALE) imb = cv2.imread('img/4.png', cv2.IMREAD_GRAYSCALE) imc = cv2.imread('img/2.png', cv2.IMREAD_GRAYSCALE) imd = cv2.imread('img/3.png', cv2.IMREAD_GRAYSCALE) images.append(ima) images.append(imb) images.append(imc) images.append(imd) # 设置标签 labels = [0, 0, 1] # 创建 FisherFace 识别器并训练 recognizer = cv2.face.FisherFaceRecognizer_create() recognizer.train(images, np.array(labels)) # 读入预测图像 predict_image = cv2.imread('img/5.png', cv2.IMREAD_GRAYSCALE) # 进行人脸识别 label, confidence = recognizer.predict(predict_image) # 输出结果 print('label=', label) print('confidence=', confidence) |
这段代码首先读取多个图像并调整为灰度图像,设置标签列表。然后创建 FisherFaceRecognizer_create 识别器对象并进行训练。最后使用识别器对预测图像进行识别,输出标签和置信度。
(三)Local Binary Patterns (LBP)
LBP 技术通过比较邻域像素与中心像素的灰度值生成二进制模式来描述图像局部纹理特征。原始的 LBP 算子定义在像素 33 的邻域内,以邻域中心像素为阈值,相邻的 8 个像素的灰度值与邻域中心的像素值进行比较,若周围像素大于中心像素值,则该像素点的位置被标记为 1,否则为 0。这样,33 邻域内的 8 个点经过比较可产生 8 位二进制数,即得到该窗口像素点 LBP 值。
LBP 有不同的改进版本,如圆形 LBP 算子,将 3×3 邻域扩展到任意邻域,并用圆形邻域代替了正方形邻域,适应不同尺度的纹理特征;旋转不变 LBP 特征,通过不断旋转圆形邻域内的 LBP 特征,选择最小的 LBP 特征值作为中心像素点的特征;Uniform Pattern LBP 特征,对 LBP 模式进行降维,减少模式种类。
以下是 LBP 特征提取的代码示例:
import cv2 gray = cv2.imread('C:/Users/Administrator/Desktop/pic/z2.jpg',0) # LBP 基本演示 def |