视频孪生携手视联网 智汇云舟亮相中国电信2024数字科技生态大会

12月3日,由中国电信主办的“2024数字科技生态大会”在广州盛大开幕。活动现场,前沿科技与创新理念交相辉映,数字科技未来蓝图徐徐展开。智汇云舟作为中国电信的战略合作伙伴,受邀出席本次活动。

图片

展会期间,以“天翼视联 智联视界”为主题的视联网合作论坛于当天下午举办。除了中国电信集团领导、专业公司领导外,还有中国工程院院士等学术权威,以及众多视联网行业技术专家在此齐聚,共同探讨视联网技术的未来发展方向及行业应用前景。

图片

图:智汇云舟副总裁董迅(左二)参与启动仪式

论坛上,天翼视联携手包括智汇云舟在内的十余家优秀企业,集体登台参与“视联集成协同攻坚”启动仪式。这一重磅环节也标志着天翼视联将进一步加强与合作伙伴的紧密合作,共同推动视联网技术的创新与发展,携手合作伙伴共同开启视联网行业辉煌篇章。 

作为中国电信视联产品、方案及能力提供商,智汇云舟是业界领先的基于真实视频+数字孪生技术场景构建“视频孪生”产品技术研发与应用的创新型软件企业。公司深耕视频孪生技术十余年,围绕视频相关的专利技术已积累了数十项。这些技术不仅为视频孪生独特的视频融合、视频计算、LI位置智能等核心能力提供强大支撑,还为公司构建了坚实的竞争壁垒。

天翼视联网作为中国电线布局视联网领域的先锋力量,定位为中国电信第五张基础网,目标是构建全国统一的新型视频服务基础设施。基于中国电信云网融合能力优势,天翼视联将构建“1+31+X+N”大型分布式平台体系架构,突破超大规模视频网络能力云化关键技术及应用,实现“一朵云、一张网、一个平台”,形成全球最大规模和技术领先的视频综合服务网络。视联网用户规模已超1亿户,行业应用丰富,涵盖了交通物流、住建、卫健、应急、政法公安、政务、文旅、教育、餐饮店铺等行业。随着智汇云舟与天翼视联战略合作的不断深入,双方除了携手探索更多行业的数字化转型升级应用解决方案外,还将共同打造视频孪生场景化一体机,构建全空间要素的虚实可视、关联洞察和推演决策能力。

展望未来,智汇云舟将不断探索突破技术边界,深入推进视联网与视频孪生技术的融合应用,为千行百业提供更加智能、高效、安全的数字化转型升级解决方案,助力数字中国建设。

内容概要:本文介绍了一种利用遗传算法优化BP神经网络进行回归预测的方法,并提供了完整的MATLAB程序代码。主要内容包括数据预处理、遗传算法与BP神经网络的结合、适应度函数的设计以及最终的预测结果展示。文中详细解释了如何将Excel格式的数据导入MATLAB并进行归一化处理,如何定义适应度函数来优化BP神经网络的参数(如激活函数和学习率),并通过遗传算法找到最优解。实验结果显示,在某工业数据集上,经过遗传算法优化后的BP神经网络预测精度显著提高,从原来的0.82提升到了0.91。此外,还提到了一些实用技巧,比如调整遗传代数、修改激活函数等方法进一步改进模型性能。 适合人群:对机器学习有一定了解的研究人员和技术爱好者,特别是那些希望深入了解遗传算法与BP神经网络结合应用的人士。 使用场景及目标:适用于需要快速构建高效回归预测模型的场景,尤其是当传统BP神经网络无法达到预期效果时。通过本篇文章的学习,读者能够掌握一种有效的优化手段,从而提高模型的泛化能力和预测准确性。 其他说明:代码可以直接应用于新的数据集,只需确保数据格式符合要求(Excel格式)。对于想要深入探索或改进现有模型的人来说,还可以尝试更换不同的激活函数或其他调节方式来获得更好的表现。
粒子群优化(PSO)是一种基于群体能的优化算法,由James Kennedy和Russell Eberhart于1995年提出,灵感来源于鸟群或鱼群的群体行为 。它通过模拟群体间的协作与竞争,利用个体和群体的经验来迭代求解问题 。PSO常用于优化支持向量机(SVM)的参数,以提升模型性能 。SVM是一种强大的监督学习模型,通过寻找最优超平面实现分类或回归 ,其性能依赖于参数C(惩罚因子)和γ(核函数参数) 。 PSO优化SVM参数的过程如下:首先随机生成一组粒子,每个粒子代表一组SVM参数(C和γ) 。接着,使用这些参数训练SVM模型,并通过测试集评估性能(如准确率或F1分数),作为粒子的适应度值 。然后,根据个体和全局最优解的位置更新粒子的速度和位置 ,速度决定移动方向和速度,位置表示参数组合 。粒子群共享全局最优解信息,推动所有粒子向最优解移动 。重复上述步骤,直至达到预设迭代次数或满足停止条件 。 在实际应用中,PSO-SVM的实现通常包括以下部分:数据预处理(导入、清洗、标准化等) ;PSO算法实现(定义粒子结构、初始化种群、设定优化目标和边界条件) ;SVM模型训练(使用不同参数组合) ;适应度计算(评估模型性能) ;更新规则(根据PSO算法更新速度和位置) ;主循环(多轮迭代,记录全局最优解) ;结果分析(展示最佳参数组合,进行最终预测) 。 PSO优化SVM参数的过程自动高效,可提高模型泛化能力和预测准确性 。对于初学者,这是一个很好的实践案例,有助于理解优化算法在机器学习中的应用 ;对于有经验的开发者,可作为进一步研究和改进的基础,例如探索PSO变体或结合其他优化方法 。
在移动开发领域,Android Studio 是谷歌推出的官方集成开发环境(IDE),专门用于开发 Android 应用。本项目旨在通过 Android Studio 创建一个模仿流行生活分享平台小红书的简单应用。小红书以其强大的社交功能和丰富的用户生成内容而闻名,融合了购物、博客和社交媒体的特点。通过复刻小红书,开发者可以学习构建类似的混合型应用。 1. Android Studio 核心知识点 界面设计:利用 Android Studio 的布局编辑器(可通过 XML 编码或拖放操作)来构建用户界面,涵盖 TextView、ImageView、RecyclerView 等多种组件。 主题与样式:掌握 Material Design 的应用,自定义主题和样式,以实现类似小红书的觉效果。 Activity 与 Fragment:理解 Activity 和 Fragment 的生命周期,以及它们在多屏幕适配中的作用。 Intent:通过 Intent 实现页面跳转和数据传递。 2. 小红书 App 特性实现 登录注册:实现用户登录和注册功能,可能涉及 OAuth 或自定义认证机制。 数据获取与展示:使用网络请求库(如 Retrofit 或 OkHttp)从服务器获取数据,并通过 RecyclerView 展示,可能采用瀑布流布局。 图片加载:借助图片加载库(如 Glide 或 Picasso)优化图片加载速度和性能。 社交功能:实现评论、点赞、分享等社交功能,涉及数据库操作和网络通信。 动态通知:集成 Firebase Cloud Messaging(FCM)实现即时消息推送。 3. Android SDK 与相关库 Android SDK:熟悉不同版本的 Android API,确保应用的兼容性。 Room Persistence Library:用于本地数据库存储,缓存
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值