PG数据库众多开放特性概述
- 开放的数据类型接口,使得PG支持超级丰富的数据类型,除了传统数据库支持的类型,
还支持GIS,JSON,RANGE,IP,ISBN,图像特征值,化学,DNA等等扩展的类型,用
户还可以根据实际业务扩展更多的类型。 - 开放的操作符接口,使得PG不仅仅支持常见的类型操作符,还支持扩展的操作符,例
如 距离符,逻辑并、交、差符号,图像相似符号,几何计算符号等等扩展的符号,
用户还可以根据实际业务扩展更多的操作符。 - 开放的外部数据源接口,使得PG支持丰富的外部数据源,例如可以通过FDW读写
MySQL, redis, mongo, oracle, sqlserver, hive, www, hbase, ldap, 等等只要你能想到的数据
源都可以通过FDW接口读写。 - 开放的语言接口,使得PG支持几乎地球上所有的编程语言作为数据库的函数、存储过
程语言,例如plpython , plperl , pljava , plR , plCUDA , plshell等等。用户可以通过
language handler扩展PG的语言支持。 - 开放的索引接口,使得PG支持非常丰富的索引方法,例如btree , hash , gin , gist , sp-gist ,
brin , bloom , rum , zombodb , bitmap (greenplum extend),用户可以根据不同的数据类型,
以及查询的场景,选择不同的索引。 - PG内部还支持BitmapAnd, BitmapOr的优化方法,可以合并多个索引的扫描操作,从而
提升多个索引数据访问的效率。
btree索引原理和应用场景
PostgreSQL索引结构:
- meta page和root page是一定有的,meta page需要一个页来存储,表示指向root
page的page id。 - 随着记录数的增加,一个root page可能存不下所有的heap item,就会有leaf page,
甚至branch page,甚至多层的branch page。 - 一共有几层branch 和 leaf,可以用btree page元数据的 level 来表示。
索引工具介绍
如何访问索引结构
1、create extension pageinspect
2、查看meta块 select * from bt_metap(‘tab1_pkey’);
3、查看root page的stats select * from bt_page_stats(‘tab1_pkey’,1);
4、查看root(leaf)页里面的内容: select * from bt_page_items(‘tab1_pkey’,1);
5、根据ctid来访问表: select * from tab1 where ctid=’(0,1)’;
第一种情况
1、环境准备
postgres=# create extension pageinspect;
postgres=# create table tab1(id int primary key, info text);
CREATE TABLE
postgres=# insert into tab1 select generate_series(1,100), md5(random()::text);
INSERT 0 100
postgres=# vacuum analyze tab1;
VACUUM
第一种情况:
有1层(0)结构,包括meta page, root page
2、查看meta块
此时level 0,root块为1。
3、根据root page id = 1,查看root page的stats
ndx=# select * from bt_page_stats('tab1_pkey',1);
此时:btpo=0,说明处于第0层。
btpo_flags=3,说明它既是leaf又是root页。即:root_page(2)+leaf_page(1)=3
注:
meta page
root page :表示为btpo_flags=2
branch page :表示为btpo_flags=0
leaf page :表示为btpo_flags=1
4、查看root(leaf)页里面的内容
indx=# select * from bt_page_items('tab1_pkey',1);
此时ctid就是指向表的行id,类似于oracle的rowid,PG中为tid。data就是索引列的值,16进制。
5、根据ctid来访问表
indx=# select * from tab1 where ctid='(0,1)';
6、查看表的数据来验证
indx=# select * from tab1 limit 2;
第二种情况
有2层(0,1)结构,包括meta page, root page, leaf page.
create table t_btree(id int, info text);
insert into t_btree select generate_series(1,10000), md5(random()::text) ;
create index idx_t_btree_1 on t_btree using btree (id);
1、查看meta数据
indx=# select * from bt_metap(‘idx_t_btree_1’);
root块在第3块
2、根据root page id 查看root page的stats
indx=# select * from bt_page_stats(‘idx_t_btree_1’,3);
3、查看root page存储的 leaf page items (指向leaf page)
indx=# select * from bt_page_items(‘idx_t_btree_1’,3);
一共28个叶块。data存储的是这个leaf page存储的最小值。
4、查看第一个叶块统计
indx=# select * from bt_page_stats(‘idx_t_btree_1’,1);
btpo=0,说明是最底层,btpo_flags=1,即叶块。
5、查看其它叶块统计,当查询到第30块时,显示超出块的范围
indx=# select * from bt_page_stats(‘idx_t_btree_1’,29);
6、查看第一个叶块的内容
indx=# select * from bt_page_items(‘idx_t_btree_1’,1);
7、根据CTID查看表中的行数据
select * from t_btree where ctid=’(0,1)’;
第三种
记录数超过1层结构的索引所能够存储的记录数时,会分裂为2层结构,除了meta page和root
page,还可能包含1层branch page以及1层leaf page。
1、建表
create table tab2 (id int primary key, info text);
postgres=# insert into tab2 select trunc(random()*10000000), md5(random()::text) from
generate_series(1,1000000) on conflict on constraint tab2_pkey do nothing;
INSERT 0 951379
postgres=# vacuum analyze tab2;
2、查看meta page,可以看到root page id = 412, 索引的level=2,即包括1级 branch 和 1级 leaf。
postgres=# select * from bt_metap(‘tab2_pkey’);
3、根据root page id 查看root page的stats
indx=# select * from bt_page_stats(‘tab2_pkey’, 412);
btpo = 2 当前在第二层,另外还表示下层是1。
btpo_flags = 2 说明是root page
4、查看root page存储的 branch page items (指向branch page)
postgres=# select * from bt_page_items(‘tab2_pkey’, 412);
5、根据branch page id查看stats
indx=# select * from bt_page_stats(‘tab2_pkey’, 3);
6、查看branch page存储的 leaf page ctid (指向leaf page)
indx=# indx=# select * from bt_page_items(‘tab2_pkey’, 3);
6、查看branch page存储的 leaf page ctid (指向leaf page)
indx=# indx=# select * from bt_page_items(‘tab2_pkey’, 3);
只要不是最右边的页,第一条都代表右页的起始item。
第二条才是当前页的起始ctid
注意所有branch page的起始item对应的data都是空的。
也就是说它不存储当前branch page包含的所有leaf pages的索引字段内容的最小值。
7、根据ctid 查看leaf page的统计
indx=# select * from bt_page_stats(‘tab2_pkey’, 1);
btpo = 0 当前在第0层,即最底层,这里存储的是heap ctid
btpo_flags = 1 说明是leaf page
第0层叶块,第1层枝块,第2层root块。
8、查看leaf页的指向表的ctid
indx=# select * from bt_page_items(‘tab2_pkey’, 1);
9、通过ctid查看表的数据
indx=# select * from tab2 where ctid=’(1748,1)’;
索引案例应用
利用查看索引数据块的变化,去证明Autovacuum是否会维护索引。
1、环境搭建
create table tbl_test (id int, info text, c_time timestamp);
insert into tbl_test select generate_series(1,100000),md5(random()::text),clock_timestamp();
create index tbl_test_id_ind on tbl_test (id);
2、索引信息
–查看索引元数据
select * from bt_metap(‘tbl_test_id_ind’);
–查看索引root根统计
select * from bt_page_stats(‘tbl_test_id_ind’,3);
–查看索引叶块内容(此时没有发生数据更新)
indx=# select * from bt_page_items(‘tbl_test_id_ind’,1);
3、更新表数据,导致autovacuum触发
update tbl_test set info=md5(random()::text) where id < 20060;
4、查看索引叶块的内容变化(autovacuum前)
indx=# select * from bt_page_items(‘tbl_test_id_ind’,1);
5、查看索引叶块的内容变化(autovacuum后)
indx=# select * from bt_page_items(‘tbl_test_id_ind’,1);
观察后发现索引块的信息更新了,原来的索引行被删除。说明autovacuum会自动维护索引信息。