传统IT列强和互联网新贵们如何应对大数据浪潮

摘要:本文简单分析了大数据这个领域内,不同类型的公司大数据的理念和做法有哪些不同。大数据到底是BI Plus,还是一个大的智能平台?IBM、Oracle等大IT公司怎么看待大数据?Google、Baidu等互联网的巨头们怎么看待大数据?

 

 


先声明一下,本文是给对于大数据和IT知识有一定基础的朋友看的,不是普及大数据基本概念的,对某些词汇和说法需要你自己去查看一些相关资料。当然本文也不谈什么高深技术,谈的是不同的公司做大数据这个生意的理念和战略思路

 

我先说一个基础,然后再讨论本文的具体问题。关于大数据的说法很多,有理解的不同,也有出不同同目的,而导致的理解和说法不同。大数据最早脱胎于原来的经营分析BI(Business Intelligence),而BI是为了解决人们对于企业经营数据多维度的分析和洞察,从而支撑企业领导人做决策。

大数据的概念,不管是4V(Volume、Velocity、Variety、Value)还是5V(多了一个Veracity)等各种定义,还是全体数据、快速处理、相关关系等三大大数据核心特征,这些都偏理论化的理解,是最基础的东西,这里就不去细说了。在实际的大数据应用中可以看成两种类型:

1)加入大数据元素的BI革新,可以看作BI Plus。除了分析企业内部经营类信息之外,还可以融入大量以前看起来不相关和不可利用的数据,图片、日志、社交、及其数据等等都在它的范畴之内。

2)大数据大平台,是以海量数据为核心,进行复杂行业建模和大量自学习,数据来源于各种渠道。最终形成一个统一的大数据服务平台。

 

总的来说,很多大的IT公司其实提供的是BI Plus大数据解决方案,而大的互联网公司做的其实是第二种。从宣传上,它们都被称为大数据。

 

接下来我以问题和回答的方式来阐述,这两种大数据是如何存在于市场格局上:

 

1、 大数据来了,带来的数据洪水,当然对于传统IT厂商来看,是支撑大数据,例如Cisco,IBM、Oracle、HP等,但是无一例外的是,他们走的是高端路线,和互联网厂商支撑大数据的大相径庭。行业对此的看法也是不一致的,大数据应该是低成本,还是高成本的?

 

关于所谓的高端路线,对于Oracle、IBM这类大公司,可以这么理解,他们关注的是大、中型企业客户中的大数据销售机会,并且带有很多的行业属性。

基于传统IT列强在对行业理解和行业解决方案成熟度、渠道合作伙伴、ISV等领域的基础,他们选择这些能为他们带来收入的中高端客户作为目标。从销售上看,主要是销售大数据解决方案,而不是大数据服务,行业知识、领域专家等资源需要靠IT大公司的原有行业合作伙伴来提供助力。

这些IT公司提供大数据解决方案,本身算不上大数据的用户,但是不妨碍他们开发出市场上具有竞争力的大数据解决方案,当然,将来IT列强们也会把大数据大量用在公司内部。

互联网公司通常对于行业(非IT行业)积累的底蕴要差很多,互联网的大数据通常是以通过大数据为自己产生价值为主,他们首先是大数据用户,然后才会考虑去输出大数据的价值。

这就决定了两者对于大数据的出发点、说法和做法不同。它们之间完全是互相理解的,但是并不妨碍在公开场合的争论和相互打击,这毕竟是商业社会。

总的来说,大中型企业有能力自己购买和构建大数据解决方案,作为内部使用,这些企业在大数据IT方面的收入可以支撑IT厂商的收入增长。而大数据的真正大平台,还需要靠互联网公司来推动。

大数据技术的进步,无论互联网公司还是IT公司都会做出自己的贡献,但是目前看起来,传统IT公司目标是大中型客户、而互联网公司目标是中小型客户;互联网公司的优势在于他们具有大数据运营和服务的能力,这个在未来将会产生很大影响。

 

2、 大数据分析最终的结果一定是结构化,这样看来传统的BI的价值更大。目前IT公司们都在宣扬这个理念,他们采用什么样的策略?

 

我不完全认同大数据的分析结果一定是结构化的这一个说法,虽然目前看起来是这样。我觉得真正的核心在于大数据的分析结果是可视化的和可理解的。结构化还是非结构化都只是可视化之前的状态和步骤。

关于传统厂商在BI和大数据结合上的布局,通过Oracle、Teradata等公司的做法,我们可以这么理解的:他们选择了一个渐进的思路,把大数据作为原有BI来源的的一个补充,BI进行小幅度改造即可兼容大数据(BI Plus)。这样通过原有BI解决方案和新的大数据解决方案的结合,可以在尽可能少改变的情况下,利用新的大数据理念带动原有BI解决方案和产品的销售。

在大、中型企业中,原有BI的投资已经很多年了,IT厂商的思路是在这个基础上进行修修补补,虽然不像互联网巨头那样可以没有顾虑的推广全新的解决方案,具有很强颠覆性,但是,这种方式更易于受到企业客户的欢迎、接受和买单。

互联网巨头们,通常没有历史遗留问题需要去考虑,所以他们引领的大数据浪潮,更多的是从完全新建和颠覆的角度去做的,毕竟它们自己就是这么做大数据的。

从市场来看,企业用户的大数据项目基本都是传统IT公司把持和提供服务的。互联网公司的大数据理念、方案和服务虽然看起来很美,却还不具有对外大规模输出的能力,或许3-5年后会比较明朗。

 

3、 大数据对传统IT企业来说有多大威胁?大数据来了,对传统软件厂商的冲击是什么,他们认为大数据技术和传统的软件的技术是什么关系,如何保护传统的价值?

 

这是一个经常会被人问到的问题,其实这个问题是有些不是很明确的。从IT整个大行业来看,大数据技术只是软件技术应用中的一种,如果说冲击,大数据对于传统的BI确实具有替代效果和冲击。

大数据是从一个点(BI或者说类BI)去发力和颠覆。云服务是从一个面(平台层)去发力和颠覆。

这种冲击也是一个渐变的过程,所以IT公司也会不断调整投资和业务方向,不能适应的就会被市场抛弃。如果IT厂商目光短浅,仅仅立足于保护传统BI的价值,那么可能前途堪忧,好在大数据的发展速度并不是很快,传统IT列强们可以有足够的反应时间。

对于大数据领域,所有大的IT厂商都在边看边改变,也正是这种思路,导致大数据这个领域发展速度不够快。

 

最后,从大的方面说一下自己的看看。对于IT行业来说,大数据只是一个热点,原本由IT领域引导的一个热点,现在变的所有的行业都在热议的一个话题。也从另一个侧面说明了IT领域对热点把握的能力。

近些年来成功的IT热点:微机、互联网、Web2.0、SOA、云计算、大数据、人工智能这些不都是IT领域开发和宣传出来的理念吗,看看这些历史,会觉得大数据不是那么特殊。

IT行业也在优胜劣汰,适合的留下,不适合的死掉或者被收购,新的IT趋势会引领行业发展,同时也在改造IT行业。人工智能提出好几十年了,到现在也还不具有大规模推广的能力。

对于大数据发展速度会有多快,如果更细化来看待分为两种情况:

如果把大数据看作BI Plus,那么会发展的很快;如果看做理想中的“大数据大平台+人工智能”,那么我想发展速度不会很快。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值