assembly8low
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
36、增材制造中的特征工程技术解析
本文深入探讨了增材制造(AM)中的特征工程技术,分析了如何通过数据驱动的方法提升制造过程的可靠性和效率。从设计到后处理的整个生命周期,特征工程在不同阶段的应用得到了系统梳理,并讨论了当前面临的挑战与未来的发展机遇。原创 2025-06-25 01:31:07 · 76 阅读 · 0 评论 -
35、实现增材制造中的知识转移
本文探讨了在增材制造(AM)领域中实现知识转移的关键技术和方法,包括基于数据、特征和知识的转移方式。通过迁移学习和领域适应技术,可以实现跨机构和跨场景的知识共享,加速AM技术的发展与应用。文章还结合实际案例,展示了如何将金属、塑料和复合材料等不同领域的知识进行相互转移,并展望了未来研究的方向。原创 2025-06-24 09:08:33 · 42 阅读 · 0 评论 -
34、提高增材制造特征保真度的重要性与方法
本文探讨了提高增材制造(AM)中特征保真度的重要性及方法,包括测量科学和科学建模的结合、多传感器融合技术、现实-虚拟数据融合策略以及高保真传感器的应用。通过案例分析和技术细节解析,文章展示了如何提升数据驱动模型的预测能力和可靠性,并展望了未来发展方向,如新型传感器开发和深度学习的结合。原创 2025-06-23 12:54:55 · 37 阅读 · 0 评论 -
33、数据处理的自动化:加速增材制造的工业应用
本文探讨了数据处理自动化在增材制造(AM)中的关键作用,重点分析了如何通过机器学习技术实现标签提取、特征生成和数据融合。文章还介绍了现有自动化工具和库的现状,并提出了面向AM的专用库开发的重要性。此外,文中讨论了自动化数据处理的具体实现步骤、未来发展方向以及潜在挑战,旨在推动AM技术在工业中的广泛应用。原创 2025-06-22 16:47:00 · 62 阅读 · 0 评论 -
32、基准测试支持:推进数据驱动的增材制造
本文探讨了基准测试支持在推进数据驱动的增材制造中的关键作用。文章重点分析了基准测试平台的重要性、高质量数据集的开发流程以及可重用特征的生成方法,同时介绍了测量技术、特征工程和模型架构的基准测试流程。此外,还展望了基准测试平台的未来发展,包括多源数据融合、多尺度数据处理及跨领域合作,并讨论了其在工业应用、学术研究和技术推广中的广泛用途。通过政府、企业与科研机构的共同努力,这些资源将加速增材制造技术的发展与实际应用。原创 2025-06-21 09:10:58 · 64 阅读 · 0 评论 -
31、开放存储库:加速数据驱动的增材制造应用
本文探讨了开放存储库在加速数据驱动的增材制造(AM)应用中的关键作用。文章分析了当前增材制造领域在数据多样性、获取难度和处理复杂性方面的局限性,并提出了通过学术界与工业界、跨机构及国际合作推动数据共享的解决方案。以美国国家标准与技术研究院(NIST)的增材制造和材料数据库(AMMD)为例,介绍了开放存储库的实际应用案例。此外,还讨论了数据集多样化的挑战与对策、数据处理自动化的实现路径以及提升特征保真度和知识转移的方法,旨在为未来建设系统化、高质量的开放存储库提供指导。原创 2025-06-20 16:56:53 · 40 阅读 · 0 评论 -
30、增材制造数据准备中的挑战与机遇
本文探讨了增材制造(AM)领域中数据准备所面临的挑战与机遇。文中分析了数据在可发现性、可访问性、互操作性和可重用性方面的不足,以及知识障碍、实验和计算成本高昂、标准化不足等问题,并提出了应对策略。同时,文章也指出了开放存储库、自动化工具、特征保真度提升、基准测试平台及知识转移等关键机遇,展示了推动AM技术发展的潜在路径。原创 2025-06-19 13:18:29 · 50 阅读 · 0 评论 -
29、增材制造后处理特征空间的分析与应用
本博客深入探讨了增材制造(AM)后处理阶段的特征空间,包括宏观和微观结构特征的主要数据来源、特征表示方法、特征工程技术以及实际应用。文章详细分析了如何利用XCT、SEM等技术采集数据,并通过变换技术、特征学习和知识库工程提取关键特征,用于缺陷检测、材料性能预测等任务。此外,还总结了当前的研究趋势,并展望了未来在提高特征保真度和实现知识转移方面的研究方向。原创 2025-06-18 14:57:03 · 60 阅读 · 0 评论 -
28、增材制造中的过程特征空间分析
本文探讨了增材制造过程中的特征空间分析,涵盖了规划阶段的扫描策略、构建方向、参数特征和沉积特征。同时详细描述了熔池特征、层特征以及通用工艺特征的数据来源、表示方式及特征工程技术。重点介绍了这些特征在缺陷检测、过程监控、几何评估等方面的应用,并结合图示展示了增材制造工艺特征空间的整体概览和发展趋势。通过数据驱动的方法,可以提升金属增材制造的质量与效率,推动其大规模应用。原创 2025-06-17 11:03:55 · 84 阅读 · 0 评论 -
27、设计特征空间在增材制造中的应用与趋势
本文探讨了设计特征空间在增材制造(AM)中的应用与发展趋势,涵盖了设计特征的主要来源、表示形式、工程化方法及其实际应用。通过特征工程,可以显著提高数据质量和模型性能,从而提升AM工艺的可靠性与效率。文章还分析了当前面临的挑战与未来的发展机遇,如数据公平性、知识转移及自动化数据处理技术的前景。原创 2025-06-16 10:10:46 · 65 阅读 · 0 评论 -
26、分析增材制造特征空间
本文探讨了增材制造(AM)生命周期中设计、过程和后处理三个阶段的特征空间,分析了各阶段的特征来源、处理技术及应用场景。通过数据驱动的方法,重点研究了特征工程在AM中的作用和发展趋势,并结合实际案例展示了其应用价值。文章为未来AM智能化发展提供了方向和参考。原创 2025-06-15 14:34:18 · 39 阅读 · 0 评论 -
25、微观结构特征的工程学
本文介绍了微观结构特征在增材制造中的定义和作用,详细探讨了从打印零件中提取微观结构特征的方法和技术。内容涵盖了图像处理、特征学习以及知识库工程等特征工程技术,并结合具体案例说明其在冷却方法预测、缺陷检测和材料属性优化等方面的应用。文章旨在为数据驱动的增材制造领域提供关于微观结构特征分析与应用的全面指导。原创 2025-06-14 13:13:03 · 69 阅读 · 0 评论 -
24、微观结构特征的工程学
本文探讨了增材制造后处理阶段中微观结构特征的工程化,包括其关注点、来源及特征工程技术。通过扫描电子显微镜(SEM)和微观X射线计算机断层扫描(micro-XCT)获取微观结构数据,并采用图形变换、特征学习和知识库工程等技术进行处理与分析。文中还介绍了微观结构重建、结构-属性预测、缺陷分类和孔隙预测的具体应用步骤以及提高特征保真度的方法。最后,通过案例研究展示了微观结构特征在优化增材制造过程中的重要作用,并讨论了实现知识转移的可能性。原创 2025-06-13 10:12:28 · 57 阅读 · 0 评论 -
23、工艺特征工程:原位几何
本博文探讨了工艺特征工程中的原位几何特征在增材制造(AM)中的重要性及其应用。文章详细介绍了原位几何特征的来源,包括按设计模型、模拟模型和捕获模型,并讨论了如何通过图形变换、三维变换、数据预处理和特征学习等技术进行特征化处理。同时,博文还展示了多个具体应用场景,如粉末层异常检测、沉积轨迹监测以及表面缺陷分类,并强调了原位几何特征在质量控制、过程优化和复杂预测任务中的作用。最后,文章分析了该领域的挑战与发展方向,为未来的AM技术进步提供了参考。原创 2025-06-12 10:56:49 · 47 阅读 · 0 评论 -
22、工艺特征工程:熔池
本博客深入探讨了增材制造过程中熔池特征工程的关键技术与应用。内容涵盖熔池特征的多样化来源(如视觉监控、信号数据和模拟数据)、特征提取与处理方法(包括图形变换、序列变换、三维变换),以及深度学习和知识库工程在特征学习中的应用。此外,还详细介绍了熔池特征在缺陷检测、过程监控和质量控制等实际场景中的具体案例。这些技术为提升增材制造的智能化和自动化水平提供了坚实基础。原创 2025-06-11 11:48:33 · 113 阅读 · 0 评论 -
21、工艺特征工程:层
本博文深入探讨了增材制造(AM)过程中层特征的物理意义、来源及处理方法。详细介绍了图形变换、序列变换、特征学习和知识库工程等特征化方法,并展示了特征工程的具体流程,包括图像预处理、特征提取、聚类与验证。同时,博文还分析了层特征在缺陷检测、粉末床质量评估和熔池动态监控等方面的实际应用,并讨论了未来发展方向,如高保真度特征提取和知识转移技术。通过多传感器融合与深度学习模型,为提升AM过程的可靠性提供了有效途径。原创 2025-06-10 11:50:02 · 78 阅读 · 0 评论 -
20、工艺特征工程:参数化
本文详细探讨了参数特征在增材制造(AM)过程中的关键作用,包括其定义、来源、应用及处理方法。文章涵盖了从参数特征的标准化与归一化到特征选择和融合的技术,并通过实际案例展示了如何利用这些特征预测机械缺陷和优化打印参数。此外,还介绍了实时监控和未来发展方向,为提升打印质量和生产效率提供了全面的解决方案。原创 2025-06-09 13:41:29 · 63 阅读 · 0 评论 -
19、工艺特征工程:规划
本博客围绕增材制造(AM)规划阶段的工艺特征工程展开,详细介绍了几何特征提取、沉积特征提取、多传感器数据融合和G代码重建等关键技术。通过数据驱动的方法,将设计模型与打印过程关联,以优化沉积策略、构建方向和支持结构,从而提升零件的机械性能和几何精度。文章结合多个案例研究,如高维热历史预测、多传感器过程状态监测以及知识产权保护中的G代码重建,展示了特征工程在AM规划阶段的核心作用和实际应用价值。原创 2025-06-08 16:39:13 · 47 阅读 · 0 评论 -
18、增材制造中的工程学设计特征
本文探讨了在增材制造(AM)的设计阶段,如何通过特征工程技术将原始设计数据转换为支持机器学习(ML)应用的高质量特征。详细介绍了设计特征的主要来源、分类以及具体的特征提取和处理方法,包括数值编码、图形变换和表格转换等。此外,还讨论了基于知识驱动的特征提取方法及深度学习在特征学习中的应用,并结合实际案例分析了特征工程在可制造性预测和设计参数优化等方面的应用。最后,总结了设计特征工程面临的挑战,并展望了未来智能化和自动化的发展方向。原创 2025-06-07 10:38:43 · 66 阅读 · 0 评论 -
17、特征操作和库:优化增材制造的数据驱动解决方案
本文探讨了在增材制造(AM)领域中,如何通过特征操作和相关库的使用来优化数据驱动解决方案。文章详细介绍了特征操作的多种技术,如聚类、融合、传输和可视化,并列举了不同场景下的应用场景。同时,还介绍了常用的特征处理库,包括计算机视觉库、多维数组库、信号处理库和几何机器学习库,并通过代码示例展示了它们的实际应用。此外,文章总结了特征操作的具体步骤、最佳实践以及面临的挑战与解决方案。无论是研究人员还是工程师,都可以通过本文了解如何高效地利用特征操作提升模型性能和可靠性。原创 2025-06-06 09:37:03 · 46 阅读 · 0 评论 -
16、特征操作和库在增材制造中的应用
本文详细介绍了特征操作和相关库在增材制造(AM)中的应用。文章涵盖了特征操作的多种方法,如聚类、融合、可视化等,并探讨了多个常用特征库,包括计算机视觉库、多维数组库、信号处理库以及几何机器学习库。此外,还展示了特征操作与库结合的具体应用案例,并展望了未来发展方向,为AM的数据处理优化和模型训练提供了实用指导。原创 2025-06-05 14:46:06 · 64 阅读 · 0 评论 -
15、集成特征工程:提升增材制造中机器学习模型性能的关键
本文探讨了集成特征工程(Integrated Feature Engineering, IFE)在增材制造中提升机器学习模型性能的关键作用。通过结合多种特征工程技术,如特征提取、特征选择和特征学习,IFE能够有效处理复杂数据,提高模型的预测性能和鲁棒性。文中还介绍了自适应变换器、迁移学习和深度学习等技术在特征工程中的应用,并展示了多个实际案例,包括熔池特征工程和多传感器数据融合。文章强调了IFE在数据驱动的增材制造中的潜力,并讨论了其面临的挑战与机遇。原创 2025-06-04 12:51:12 · 58 阅读 · 0 评论 -
14、通过学习的特征生成:增材制造中的自动特征提取
本文探讨了在增材制造(AM)领域中通过学习的特征生成技术,重点分析了传统特征工程方法的局限性以及深度学习模型在自动特征提取中的优势。文章详细介绍了监督学习和非监督学习的应用场景及操作步骤,并结合具体案例说明了卷积神经网络(CNN)和自编码器(AEs)等模型如何用于缺陷检测、熔池动态变化预测等任务。同时,还讨论了数据增强、迁移学习和多模型融合等优化策略,以提升模型性能和鲁棒性。最后,展望了未来新兴技术如生成对抗网络(GAN)和强化学习(RL)在该领域的应用前景。原创 2025-06-03 14:06:52 · 54 阅读 · 0 评论 -
13、通过学习的特征生成在增材制造中的应用
本文探讨了特征学习在增材制造中的应用,涵盖了监督和非监督学习方法,以及深度学习模型如卷积神经网络(CNN)和自编码器(AE)的使用。文章详细描述了如何通过这些技术提高数据驱动模型的性能、泛化能力和鲁棒性,并展示了多个实际应用案例,包括熔池图像分类、稀疏表示生成、材料属性预测、过程监控和质量控制。同时,还讨论了特征学习在增材制造中的未来发展方向及面临的挑战与机遇。原创 2025-06-02 12:51:55 · 46 阅读 · 0 评论 -
12、通过转换生成特征:增材制造中的关键技术
本文深入探讨了增材制造中通过转换生成特征的关键技术,详细介绍了特征生成与特征学习的区别,并针对表格、图形、序列和三维数据等不同数据类型,讨论了相应的特征生成方法。文章还提供了在预测、分类和质量控制等应用场景中的实际案例,展示了这些技术如何提高模型性能和可解释性,为实现智能化制造提供了技术支持。原创 2025-06-01 15:42:01 · 98 阅读 · 0 评论 -
11、特征子集选择在增材制造中的应用
本文详细介绍了特征子集选择的三种主要方法——过滤器方法、包装器方法和混合方法,并探讨了它们在增材制造中的应用与效果。通过具体案例和技术细节,展示了如何利用这些方法优化模型性能和减少计算开销,为增材制造的智能化和高效化提供支持。原创 2025-05-31 14:12:51 · 50 阅读 · 0 评论 -
10、增材制造特定数据准备
本博客探讨了增材制造(AM)中特定数据准备的关键技术和方法,包括数据注册、传感器本体论、坐标变换和数据对齐等核心步骤。同时深入分析了多尺度数据融合框架、大数据存储架构及基于数字孪生的数据管理系统,以提升AM数据的质量与一致性。此外,还介绍了提高原始数据质量的综合措施,如缺失值处理、降噪和信号增强等数据预处理技术。这些方法为数据驱动模型开发和机器学习应用提供了坚实的基础。原创 2025-05-30 16:00:23 · 42 阅读 · 0 评论 -
9、增材制造数据准备中的通用技术详解
本文详细介绍了增材制造中数据准备的通用技术,涵盖数据预处理、数据转换、数据缩放、数据离散化以及图像特定预处理技术,并提供了实际应用场景和代码示例。通过这些技术,可以提升数据质量及机器学习模型性能,为增材制造中的数据驱动解决方案奠定基础。原创 2025-05-29 13:30:54 · 77 阅读 · 0 评论 -
8、通过转换的特征生成:增材制造中的关键技术
本博文探讨了在增材制造(AM)领域中,如何通过特征工程中的转换方法提升机器学习模型的性能。文章详细介绍了特征提取、构建和设计的区别,以及特征转换与特征学习的不同方法,并针对表格数据、图形数据、序列数据和三维数据等不同数据类型提供了具体的转换技术。同时,结合实际应用案例,如缺陷检测、质量控制和可制造性预测,展示了特征转换和特征学习的具体流程和优势。此外,还讨论了知识驱动的特征工程和集成特征工程的应用,为AM领域的数据处理提供了全面的技术支持。原创 2025-05-28 15:05:47 · 60 阅读 · 0 评论 -
7、增材制造中的特征源解析
本博客深入探讨了增材制造(AM)中特征源的多样性及其在数据驱动方法中的应用。文章从科学建模和测量科学入手,分析了高保真度模拟和传感器技术如何提供高质量数据,并详细介绍了原位捕获的信号、图形与三维数据以及表格数据的处理流程。此外,还讨论了不同特征源在过程监控、质量控制和缺陷检测等方面的实际应用,同时指出了未来发展方向及挑战。通过多源数据融合和优化,旨在提升AM制造过程的可靠性与效率。原创 2025-05-27 09:31:07 · 44 阅读 · 0 评论 -
6、增材制造特征工程:数据驱动解决方案的总结
本博客探讨了增材制造(AM)领域中特征工程的关键作用。随着AM技术的快速发展,其过程可靠性问题成为阻碍广泛应用的主要瓶颈。数据驱动方法,尤其是机器学习和深度学习,为解决这些问题提供了高效且灵活的解决方案。博客系统性地总结了AM生命周期中的各类数据源、特征工程技术及其应用,并分析了当前面临的挑战与未来机遇。重点在于如何通过特征工程提升数据质量,从而改善AM的设计、工艺监控、结构评估和性能预测等关键任务。原创 2025-05-26 14:15:08 · 98 阅读 · 0 评论 -
5、数据驱动增材制造中的特征工程技术评审
本文全面评审了数据驱动方法在增材制造(AM)中的应用,重点探讨了特征工程技术如何提升机器学习和深度学习模型的性能。从设计到后处理,覆盖了AM生命周期各个阶段的特征工程实践,并分析了当前面临的挑战与未来机遇,为实现高效、可靠的AM制造提供了理论支持和技术指导。原创 2025-05-25 11:46:02 · 60 阅读 · 0 评论 -
4、分析增材制造特征空间
本文深入探讨了增材制造(AM)中的特征空间,包括设计、过程和后处理阶段的特征来源、工程化方法及应用场景。重点分析了如何通过特征工程优化设计以提高可制造性,监控制造过程以实现质量控制,并通过后处理特征评估打印零件的质量与性能。文章还展示了不同特征空间的发展趋势以及其在数据驱动应用中的重要价值。原创 2025-05-24 11:07:22 · 37 阅读 · 0 评论 -
3、数据驱动的增材制造现状
本文综述了数据驱动方法在增材制造(AM)中的应用现状,探讨了其计算效率、领域独立性以及与工业4.0的契合等优势。同时分析了当前面临的数据质量、多样性和领域知识不足等问题,并总结了现有研究中数据准备和特征化水平的不足之处。文章还介绍了数据驱动模型在AM设计、过程监控和后处理阶段的应用案例,并对未来发展提出了提高数据质量、跨领域合作、标准化和预测准确性的方向。原创 2025-05-23 09:08:24 · 55 阅读 · 0 评论 -
2、增材制造中的特征工程
本文深入探讨了增材制造(AM)中的特征工程技术,涵盖了从数据准备、特征生成到特征选择和操作的各个方面。文章介绍了科学建模与测量科学作为主要数据来源的应用,并详细阐述了子集选择、通过转换生成、通过学习生成、知识驱动及综合特征工程等多种技术类别。同时,结合设计、工艺和后处理阶段的具体应用实例,展示了特征工程在提升AM过程可靠性与可重复性方面的关键作用。此外,文章还分析了AM数据准备面临的挑战与潜在机遇,为推动AM技术的发展提供了重要见解。原创 2025-05-22 13:30:36 · 106 阅读 · 0 评论 -
1、增材制造中的数据驱动解决方案:特征工程的重要性
本文探讨了数据驱动方法在增材制造(AM)中的应用,特别是特征工程的重要性。文章详细分析了AM技术的七个主要类别、面临的挑战以及潜在的数据驱动解决方案,并系统总结了设计、工艺和后处理阶段的特征空间及工程化方法。同时讨论了数据准备中的挑战与机遇,包括开放存储库、基准测试支持、自动化数据处理、提高特征保真度以及知识转移的可能性。最后,文章强调了数据驱动模型在提升AM生产效率和质量方面的巨大潜力。原创 2025-05-21 11:23:23 · 102 阅读 · 0 评论
分享