题目:求1+2+…+n,要求不能使用乘除法、for、while、if、else、switch、case等关键字以及条件判断语句(A?B:C)。
分析:这道题没有多少实际意义,因为在软件开发中不会有这么变态的限制。但这道题却能有效地考查发散思维能力,而发散思维能力能反映出对编程相关技术理解的深刻程度。
通常求1+2+…+n除了用公式n(n+1)/2之外,无外乎循环和递归两种思路。由于已经明确限制for和while的使用,循环已经不能再用了。同样,递归函数也需要用if语句或者条件判断语句来判断是继续递归下去还是终止递归,但现在题目已经不允许使用这两种语句了。
我们仍然围绕循环做文章。循环只是让相同的代码执行n遍而已,我们完全可以不用for和while达到这个效果。比如定义一个类,我们new一含有n个这种类型元素的数组,那么该类的构造函数将确定会被调用n次。我们可以将需要执行的代码放到构造函数里。如下代码正是基于这个思路:
- class Temp
- {
- public:
- Temp() { ++ N; Sum += N; }
- static void Reset() { N = 0; Sum = 0; }
- static int GetSum() { return Sum; }
- private:
- static int N;
- static int Sum;
- };
- int Temp::N = 0;
- int Temp::Sum = 0;
- int solution1_Sum(int n)
- {
- Temp::Reset();
- Temp *a = new Temp[n];
- delete []a;
- a = 0;
- return Temp::GetSum();
- }
class Temp { public: Temp() { ++ N; Sum += N; } static void Reset() { N = 0; Sum = 0; } static int GetSum() { return Sum; } private: static int N; static int Sum; }; int Temp::N = 0; int Temp::Sum = 0; int solution1_Sum(int n) { Temp::Reset(); Temp *a = new Temp[n]; delete []a; a = 0; return Temp::GetSum(); }
我们同样也可以围绕递归做文章。既然不能判断是不是应该终止递归,我们不妨定义两个函数。一个函数充当递归函数的角色,另一个函数处理终止递归的情况,我们需要做的就是在两个函数里二选一。从二选一我们很自然的想到布尔变量,比如ture(1)的时候调用第一个函数,false(0)的时候调用第二个函数。那现在的问题是如和把数值变量n转换成布尔值。如果对n连续做两次反运算,即!!n,那么非零的n转换为true,0转换为false。有了上述分析,我们再来看下面的代码:
- class A;
- A* Array[2];
- class A
- {
- public:
- virtual int Sum (int n) { return 0; }
- };
- class B: public A
- {
- public:
- virtual int Sum (int n) { return Array[!!n]->Sum(n-1)+n; }
- };
- int solution2_Sum(int n)
- {
- A a;
- B b;
- Array[0] = &a;
- Array[1] = &b;
- int value = Array[1]->Sum(n);
- return value;
- }
class A; A* Array[2]; class A { public: virtual int Sum (int n) { return 0; } }; class B: public A { public: virtual int Sum (int n) { return Array[!!n]->Sum(n-1)+n; } }; int solution2_Sum(int n) { A a; B b; Array[0] = &a; Array[1] = &b; int value = Array[1]->Sum(n); return value; }
这种方法是用虚函数来实现函数的选择。当n不为零时,执行函数B::Sum;当n为0时,执行A::Sum。我们也可以直接用函数指针数组,这样可能还更直接一些:
- typedef int (*fun)(int);
- int solution3_f1(int i)
- {
- return 0;
- }
- int solution3_f2(int i)
- {
- fun f[2]={solution3_f1, solution3_f2};
- return i+f[!!i](i-1);
- }
typedef int (*fun)(int); int solution3_f1(int i) { return 0; } int solution3_f2(int i) { fun f[2]={solution3_f1, solution3_f2}; return i+f[!!i](i-1); }
另外我们还可以让编译器帮我们来完成类似于递归的运算,比如如下代码:
- template <int n> struct solution4_Sum
- {
- enum Value { N = solution4_Sum<n - 1>::N + n};
- };
- template <> struct solution4_Sum<1>
- {
- enum Value { N = 1};
- };
template <int n> struct solution4_Sum { enum Value { N = solution4_Sum<n - 1>::N + n}; }; template <> struct solution4_Sum<1> { enum Value { N = 1}; };
solution4_Sum<100>::N就是1+2+...+100的结果。当编译器看到solution4_Sum<100>时,就是为模板类solution4_Sum以参数100生成该类型的代码。但以100为参数的类型需要得到以99为参数的类型,因为solution4_Sum<100>::N=solution4_Sum<99>::N+100。这个过程会递归一直到参数为1的类型,由于该类型已经显式定义,编译器无需生成,递归编译到此结束。由于这个过程是在编译过程中完成的,因此要求输入n必须是在编译期间就能确定,不能动态输入。这是该方法最大的缺点。而且编译器对递归编译代码的递归深度是有限制的,也就是要求n不能太大。