栈的中缀表达式转换成前后缀表达式

中缀转换成后缀

 

中缀转前缀

转换过程同样需要用到栈,具体过程如下:
将中缀表达式转换为前缀表达式:
(1) 初始化两个栈:运算符栈S1和储存中间结果的栈S2;
(2) 从右至左扫描中缀表达式;
(3) 遇到操作数时,将其压入S2;
(4) 遇到运算符时,比较其与S1栈顶运算符的优先级:

(4-1) 如果S1为空,或栈顶运算符为右括号“)”,则直接将此运算符入栈
(4-2) 否则,若优先级比栈顶运算符的较高或相等,也将运算符压入S1
(4-3) 否则,将S1栈顶的运算符弹出并压入到S2中,再次转到(4-1)与S1中新的栈顶运算符相比较;
(5) 遇到括号时:

(5-1) 如果是右括号“)”,则直接压入S1;
(5-2)如果是左括号“(”,则依次弹出S1栈顶的运算符,并压入S2,直到遇到右括号为止,此时将这一对括号丢弃;
(6) 重复步骤(2)至(5),直到表达式的最左边;
(7) 将S1中剩余的运算符依次弹出并压入S2;
(8) 依次弹出S2中的元素并输出,结果即为中缀表达式对应的前缀表达式。
 

代码:

#include <stdio.h>
#include <stdlib.h>

int main(void)
{
    char stack[100];
    int top=-1;
    int i = 0;
    char str[200];
    char que[200];
    int rear=0,front=0;
    printf("Type something.\n");
    scanf("%s",str);
    while(str[i] != '\0')
    {
        if(str[i] == '+' || str[i] == '-')//如果str[i]是加号或减号,则先弹出栈顶直到栈已空或栈顶元素为左括号,再将str[i]压入栈
        {
            if(top==-1)//若栈已空时,栈顶指针为空,找不到其元素,故须单独讨论
            {
                stack[++top]=str[i];
            }
            else
            {
                while(stack[top] == '+' || stack[top] == '-' || stack[top] == '*' || stack[top] == '/')
                {
                    que[++rear]=stack[top--];
                }
                stack[++top]=str[i];
            }
        }

        else if(str[i] == '*' || str[i] == '/')//如果str[i]是乘号或除号,则只有栈顶也是乘除号时才需要弹出
        {
            if(top==-1)//若栈已空时,栈顶指针为空,找不到其元素,故须单独讨论
            {
                stack[++top]=str[i];
            }
            else
            {
                while(stack[top] == '*' || stack[top] == '/')
                {
                    que[++rear]=stack[top--];
                }
                stack[++top]=str[i];
            }
        }

        else if(str[i] == '(')//如果str[i]是左括号则直接压入栈
        {
            stack[++top]=str[i];
        }

        else if(str[i] == ')')//如果str[i]是右括号,则打印并弹出栈中第一个左括号前的所有操作符,最后将此左括号直接弹出
        {
            while(stack[top] != '(')
            {
                que[++rear]=stack[top--];
            }
            stack[top--];
        }

        else//如果str[i]不是操作符则直接打印
        {
            que[++rear]=str[i];
        }
        i++;
    }
    while(top!=-1)//遍历后如果栈不为空,则弹出所有操作符
    {
        que[++rear]=stack[top--];
    }
    printf("\n输出\n");
    while(rear!=front)
    {
        printf("%c",que[++front]);
    }
    return 0;
}

### C++ 使用实现中缀表达式换为前缀和后表达式的算法 #### 一、基本概念 在计算机科学中,表达式可以分为三种形式:中缀表达式前缀表达式和后表达式。其中: - **中缀表达式** 是人们常用的书写方式,操作符位于两个操作数之间。 - **前缀表达式** 的操作符位于其操作数之前。 - **后表达式** 的操作符位于其操作数之后。 为了将中缀表达式分别化为前缀和后表达式,通常会借助这一数据结构完成运算优先级的处理[^1]。 --- #### 二、中缀到后化算法 以下是基于的数据结构实现中缀表达式表达式的具体逻辑: 1. 初始化一个空用于存储操作符。 2. 遍历输入的中缀表达式字符串中的每一个字符。 3. 如果当前字符是一个操作数,则直接将其加入输出队列。 4. 如果当前字符是左括号 `(` ,则压入中。 5. 如果当前字符是右括号 `)` ,则依次弹出顶元素直到遇到对应的左括号 `( )` 并丢弃该左括号。 6. 如果当前字符是操作符(如 `+`, `-`, `*`, `/`),则比较它与顶操作符的优先级: - 若为空或者顶操作符优先级低于当前操作符,则将当前操作符压入; - 否则,持续弹出顶操作符至输出队列,直至满足条件再压入当前操作符。 7. 当遍历完成后,如果不为空,则逐一弹出剩余的操作符并加入输出队列。 ```cpp #include <iostream> #include <stack> #include <string> using namespace std; int precedence(char op) { if (op == '+' || op == '-') return 1; if (op == '*' || op == '/') return 2; return 0; // For other characters or parentheses. } bool isOperator(char c) { return (c == '+' || c == '-' || c == '*' || c == '/'); } void infixToPostfix(string s, string &result) { stack<char> st; for (char ch : s) { if (ch >= 'a' && ch <= 'z') result += ch; // Operand found else if (ch == '(') st.push(ch); // Push to stack else if (ch == ')') { // Pop until matching ( while (!st.empty() && st.top() != '(') { result += st.top(); st.pop(); } if (!st.empty()) st.pop(); // Remove the '(' from stack } else { // Operator encountered while (!st.empty() && precedence(st.top()) >= precedence(ch)) { result += st.top(); st.pop(); } st.push(ch); } } while (!st.empty()) { // Remaining operators in stack result += st.top(); st.pop(); } } ``` 上述代码实现了从中缀表达式到后表达式换功能[^2]。 --- #### 三、中缀前缀化算法 对于从前缀表达式的构建,可以通过以下步骤逆向思维解决: 1. 将整个中缀表达式。 2. 把所有的左括号替换为右括号,反之亦然。 3. 利用标准的中缀方法得到结果后再整体翻即可获得最终的前缀表示。 ```cpp // Helper function to reverse a string string reverseString(const string& str) { string reversedStr = ""; for (auto it = str.rbegin(); it != str.rend(); ++it) { char currentChar = *it; if (currentChar == '(') currentChar = ')'; else if (currentChar == ')') currentChar = '('; reversedStr += currentChar; } return reversedStr; } void infixToPrefix(string s, string &prefixResult) { string reversedInfix = reverseString(s); string postfixReversed; infixToPostfix(reversedInfix, postfixReversed); prefixResult = reverseString(postfixReversed); } ``` 此部分展示了如何通过简单的变换技巧来获取前缀表达式的结果。 --- #### 四、综合示例程序 下面提供了一个完整的C++程序框架,演示了如何利用将给定的中缀表达式同时转换成前缀和后两种形式。 ```cpp int main() { string infixExpression = "a+b*c+(d*e+f)*g"; string postfixResult = "", prefixResult = ""; infixToPostfix(infixExpression, postfixResult); cout << "Postfix Expression: " << postfixResult << endl; infixToPrefix(infixExpression, prefixResult); cout << "Prefix Expression: " << prefixResult << endl; return 0; } ``` 运行以上代码将会打印出相应的前后版本作为验证依据。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值