自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(8)
  • 收藏
  • 关注

原创 【pytorch】【神经网络训练】loss从第二个epoch开始震荡不下降

很长时间觉得是自己的模型拟合能力不足 找了非常多的原因和解决办法。应该在每个 epoch 全部算完之后做。改过这里之后loss正常下降了。训练和验证集损失如下图所示。我在模型训练的时候使用了。(震荡幅度还挺大的)

2023-12-09 11:58:05 2152

原创 【list与ModuleList区别】定义网络模型报错 Input type (torch.cuda.FloatTensor) and weight type (torch.FloatTensor)

这事因为这时候的list中是有参数的 如果我还是这样定义 网络进行初始化的时候就会忽略这里面的参数。比如我就是用python中的list定义了CNN层 导致模型初始化的时候没有被载入。本来这样是没有出错的 因为这是一个多个block共享Reslayer参数的网络。但当我想改成不共享参数 即每一个block中都有参数 这事就会出问题。还有一种可能是网络定义的不好 导致部分参数没有载入cuda。网上给出的解释都是模型没有载入cuda。但我是做了这一步的()所以要排除这个原因。只需要在最后加上一行。

2023-11-28 11:52:29 432

原创 pytorch创建可学习参数nn.parameter()

在pytorch中创建可学习参数时出现问题。这样创建的参数是可以学习的参数 (有梯度)

2023-11-28 10:52:23 624

原创 高维矩阵相乘 及对应的numpy pytorch函数

是不能用的 这个时候如果一定要相乘,那么可以用*实现按元素相乘,通过广播机制补充到同维度,再进行同维度的乘法,只需要较低维矩阵的最高维与较高维矩阵对应维度形状相同即可。需要满足的规则是:矩阵的最后两维满足矩阵相乘原则,前面的n-2维相同(或者利用广播机制 可以为1)在介绍矩阵的乘法之前,需要先回顾总结一下向量的点乘和叉乘(矩阵的点乘叉乘和向量是不一样的)与向量相乘不同的是,矩阵点乘得到的仍然是一个矩阵,不改变维数,他的结果是。,需要满足矩阵乘法的运算规则,即前者的列数和后者的行数要相等。

2023-04-21 00:30:50 2012

原创 压缩感知与磁共振成像

除此之外,MR图像在k空间中的能量分布并不是均匀的,MR I中的大部分能量集中在靠近 k-space 的中心,并向四周衰减,因此欠采样方案的设计应该具有可变密度,在k空间中心附近采样更加密集,同时采样轨迹要尽可能的不规则(随机)以满足观测矩阵的不相干性要求,满足以上条件的欠采样越快越好。这一条件约束的是测量矩阵。虽然解决了不可微的问题,但迭代求解第一项仍然是很麻烦的,为了保证ALM的收敛性,在乘子迭代更新之前,需要将每个最小化子问题求解到一定的高精度,并且第一项要达到。

2023-03-30 20:19:57 1356 1

原创 【python+matlab】常见的图像读取、保存、显示库相互转换 对比

常用于图像读取、处理和保存的库:opencv、PIL.Image、plt、numpy数据类型Opencv:Mat为Opencv最重要的数据结构,它在Opencv中被定义为一个类,它通过把图像视为一个矩阵来存储数据。matplotlib.pyplot:读取/展示的图片也是可以直接用numpy处理PIL:读取数据为PIL类型,不是numpy,需要用np.array()转换为ndarray。

2023-03-30 20:17:08 943

原创 【python】常用的几种print输出方式

①用 ‘+’ 进行字符串的拼接 但注意必须是 字符串 + 字符串。也可以直接用逗号隔开 不用管是不是字符串 这种方式比较简单。②用%表示输出内容 类似于C语言中print的方式。可以使用强制类型转换 str(int)④f-string 格式化字符串常量。print()是标准格式化输出函数。

2023-03-28 10:27:15 857

原创 Tensorflow.keras搭建模型报错:

用tensorflow.keras的sequential方法随便搭建了一个网络 加入这一行的时候报错ValueError: Negative dimension size caused by subtracting 3 from 1 for '{{node conv2d_1/Conv2D}} = Conv2D[T=DT_FLOAT, data_format="NHWC", dilations=[1, 1, 1, 1], explicit_paddings=[], padding="VALID", s

2022-11-06 19:42:40 1315 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除