题目描述
一个N×M的由非负整数构成的数字矩阵,你需要在其中取出若干个数字,使得取出的任意两个数字不相邻(若一个数字在另外一个数字相邻88个格子中的一个即认为这两个数字相邻),求取出数字和最大是多少。
输入格式
第1行有一个正整数TT,表示了有TT组数据。
对于每一组数据,第一行有两个正整数NN和MM,表示了数字矩阵为NN行MM列。
接下来NN行,每行MM个非负整数,描述了这个数字矩阵。
输出格式
TT行,每行一个非负整数,输出所求得的答案。
输入输出样例
输入 #1
3
4 4
67 75 63 10
29 29 92 14
21 68 71 56
8 67 91 25
2 3
87 70 85
10 3 17
3 3
1 1 1
1 99 1
1 1 1
输出#1
271
172
99
说明/提示
对于第1组数据,取数方式如下:
[67] 75 63 10
29 29 [92] 14
[21] 68 71 56
8 67 [91] 25
对于20\%20%的数据,N, M≤3N,M≤3;
对于40\%40%的数据,N,M≤4N,M≤4;
对于60\%60%的数据,N, M≤5N,M≤5;
对于100\%100%的数据,N, M≤6,T≤20N,M≤6,T≤20。
这道题目也是有些难度的,请大家先自行思考10秒钟
************************************************************************
10
************************************************************************
9
************************************************************************
8
************************************************************************
7
************************************************************************
6
************************************************************************
5
************************************************************************
4
************************************************************************
3
************************************************************************
2
************************************************************************
1
************************************************************************
0
我们先说说解题思路:
拿到这道题,首先分析解题算法。
如果使用贪心法,每次去最大值,那么可以发现有问题。因为每取一个数,相邻的数就不能再取,那么每次决策就会影响下次结果,从而导致贪心决策不能最优化。
动态规划也是如此,在动态规划中,每一个分步决策不能影响后续结果,所以此算法也排除。
那么再观察数据范围:
对于100%的数据,N, M≤6,T≤20N,M≤6,T≤20。
这是一个较小的范围,所以可以考虑暴力枚举,而对于一个图,以及一个变化的状态,深度优先搜索(dfs) 应该是一个比较适合的算法。
再考虑每个数的状态。
显然,对于一个数,有取与不取两种状态,状态改变取决于周围取数的变化。我们用 mark[ i ][ j ] 记录点 ( i , j ) 附近有几个数,若 mark[ i ][ j ] ! = 0 就代表不能取这个数。
接下来上代码,具体部分具体分析
#include<bits/stdc++.h>//万能头文件
using namespace std;
const int d[8][2]={1,0,-1,0,0,1,0,-1,1,1,-1,1,1,-1,-1,-1};//方向数组用来控制搜索时的方向
int t,n,m,s[8][8],mark[8][8],ans,mx;
void dfs(int x,int y){//搜索函数,表示搜索点(x,y)
if(y==m+1){//当y到边界时,搜索下一行
dfs(x+1,1);
return;
}
if(x==n+1){//当x到边界时,搜索结束,刷新最大值
mx=max(ans,mx);
return;
}
dfs(x,y+1);// 不取此数的情况
if(mark[x][y]==0){ //取此数的情况(需保证此数周围没有取其他数,即mark[i][j]==0)
ans+=s[x][y];
for(int fx=0;fx<8;++fx){ //标记周围的数
++mark[x+d[fx][0]][y+d[fx][1]];
}
dfs(x,y+1);
for(int fx=0;fx<8;++fx){ //回溯
--mark[x+d[fx][0]][y+d[fx][1]];
}
ans-=s[x][y];
}
}
int main(){
cin>>t;
while(t--){
memset(s,0,sizeof(s));
memset(mark,0,sizeof(mark));//在做每个数据前都要初始化数组
cin>>n>>m;
for(int i=1;i<=n;++i){
for(int j=1;j<=m;++j){
cin>>s[i][j];
}
}
mx=0;
dfs(1,1);//从点(1,1)开始搜索
printf("%d\n",mx);//输出答案
}
return 0;
}
总结
总体来说,这是一道比较简单的 dfs 题,主要需要确定算法和考虑标记状态,其他的就自然迎刃而解了。