洛谷题目P1123——取数游戏

题目描述

一个N×M的由非负整数构成的数字矩阵,你需要在其中取出若干个数字,使得取出的任意两个数字不相邻(若一个数字在另外一个数字相邻88个格子中的一个即认为这两个数字相邻),求取出数字和最大是多少。

输入格式

第1行有一个正整数TT,表示了有TT组数据。

对于每一组数据,第一行有两个正整数NN和MM,表示了数字矩阵为NN行MM列。

接下来NN行,每行MM个非负整数,描述了这个数字矩阵。

输出格式

TT行,每行一个非负整数,输出所求得的答案。

输入输出样例

输入 #1

3
4 4
67 75 63 10
29 29 92 14
21 68 71 56
8 67 91 25
2 3
87 70 85
10 3 17
3 3
1 1 1
1 99 1
1 1 1

输出#1

271
172
99

说明/提示

对于第1组数据,取数方式如下:

[67] 75 63 10

29 29 [92] 14

[21] 68 71 56

8 67 [91] 25

对于20\%20%的数据,N, M≤3N,M≤3;

对于40\%40%的数据,N,M≤4N,M≤4;

对于60\%60%的数据,N, M≤5N,M≤5;

对于100\%100%的数据,N, M≤6,T≤20N,M≤6,T≤20。

这道题目也是有些难度的,请大家先自行思考10秒钟

************************************************************************

                                           10

************************************************************************

                                            9

************************************************************************

                                            8

************************************************************************

                                            7

************************************************************************

                                            6

************************************************************************

                                            5

************************************************************************

                                            4

************************************************************************

                                            3

************************************************************************

                                            2

************************************************************************

                                            1

************************************************************************

                                            0

我们先说说解题思路:

拿到这道题,首先分析解题算法。

如果使用贪心法,每次去最大值,那么可以发现有问题。因为每取一个数,相邻的数就不能再取,那么每次决策就会影响下次结果,从而导致贪心决策不能最优化。

动态规划也是如此,在动态规划中,每一个分步决策不能影响后续结果,所以此算法也排除。

那么再观察数据范围:

对于100%的数据,N, M≤6,T≤20N,M≤6,T≤20。

这是一个较小的范围,所以可以考虑暴力枚举,而对于一个图,以及一个变化的状态,深度优先搜索(dfs) 应该是一个比较适合的算法。


再考虑每个数的状态。

显然,对于一个数,有取与不取两种状态,状态改变取决于周围取数的变化。我们用 mark[ i ][ j ] 记录点 ( i , j ) 附近有几个数,若 mark[ i ][ j ] ! = 0 就代表不能取这个数。

接下来上代码,具体部分具体分析

#include<bits/stdc++.h>//万能头文件 
using namespace std;
const int d[8][2]={1,0,-1,0,0,1,0,-1,1,1,-1,1,1,-1,-1,-1};//方向数组用来控制搜索时的方向 
int t,n,m,s[8][8],mark[8][8],ans,mx;
void dfs(int x,int y){//搜索函数,表示搜索点(x,y) 
	if(y==m+1){//当y到边界时,搜索下一行 
		dfs(x+1,1);
		return;
	}
	if(x==n+1){//当x到边界时,搜索结束,刷新最大值 
		mx=max(ans,mx);
		return;
	}
	dfs(x,y+1);// 不取此数的情况 
	if(mark[x][y]==0){ //取此数的情况(需保证此数周围没有取其他数,即mark[i][j]==0)
		ans+=s[x][y];
		for(int fx=0;fx<8;++fx){ //标记周围的数 
			++mark[x+d[fx][0]][y+d[fx][1]];
		}
		dfs(x,y+1);
		for(int fx=0;fx<8;++fx){ //回溯 
			--mark[x+d[fx][0]][y+d[fx][1]];
		}
		ans-=s[x][y];
	}
}
int main(){
	cin>>t; 
	while(t--){
		memset(s,0,sizeof(s));
		memset(mark,0,sizeof(mark));//在做每个数据前都要初始化数组 
		cin>>n>>m;
		for(int i=1;i<=n;++i){
			for(int j=1;j<=m;++j){
				cin>>s[i][j];
			}
		}
		mx=0;
		dfs(1,1);//从点(1,1)开始搜索 
		printf("%d\n",mx);//输出答案 
	}
	return 0;
}

总结

总体来说,这是一道比较简单的 dfs 题,主要需要确定算法和考虑标记状态,其他的就自然迎刃而解了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值