Python计算各点距离的方法
在数据处理和机器学习等领域中,计算各点之间的距离是一个常见的任务。Python作为一门功能丰富的编程语言,自然也提供了多种计算各点距离的方法。
坐标系表示
在计算各点距离之前,我们需要使用坐标系表示每个点的位置。通常,在二维平面上,我们使用笛卡尔坐标系来表示点的位置,其中每个点都有一个x坐标和y坐标。在三维空间中,我们使用三维笛卡尔坐标系来表示点的位置,其中每个点有x、y和z三个坐标。
欧几里得距离
欧几里得距离是计算两个点之间的距离最常用的方法之一。这个方法是基于勾股定理,即 C 2 = A 2 + B 2 C² = A² + B² C2=A2+B2。在二维平面上,两个点 ( x 1 , y 1 ) (x_{1}, y_{1}) (x1,y1)和 ( x 2 , y 2 ) (x_{2}, y_{2}) (x2,y2)之间的欧几里得距离为:
d E = ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 d_{E} = \sqrt{(x_{2}-x_{1})^{2} + (y_{2}-y_{1})^{2}} dE=(x2−x1)2+(y2−y1)2
在三维空间中,两个点 ( x 1 , y 1 , z 1 ) (x_{1}, y_{1}, z_{1}) (x1,y1,z1)和 ( x