Java 大视界 -- 基于 Java 的大数据实时数据处理框架性能评测与选型建议(121)

在这里插入图片描述
       💖亲爱的朋友们,热烈欢迎来到 青云交的博客!能与诸位在此相逢,我倍感荣幸。在这飞速更迭的时代,我们都渴望一方心灵净土,而 我的博客 正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识,也期待你毫无保留地分享独特见解,愿我们于此携手成长,共赴新程!💖

在这里插入图片描述

一、欢迎加入【福利社群

点击快速加入: 青云交灵犀技韵交响盛汇福利社群
点击快速加入2: 2024 CSDN 博客之星 创作交流营(NEW)

二、本博客的精华专栏:

  1. 大数据新视界专栏系列:聚焦大数据,展技术应用,推动进步拓展新视野。
  2. Java 大视界专栏系列(NEW):聚焦 Java 编程,细剖基础语法至高级框架。展示 Web、大数据等多领域应用,精研 JVM 性能优化,助您拓宽视野,提升硬核编程力。
  3. Java 大厂面试专栏系列:提供大厂面试的相关技巧和经验,助力求职。
  4. Python 魅力之旅:探索数据与智能的奥秘专栏系列:走进 Python 的精彩天地,感受数据处理与智能应用的独特魅力。
  5. Java 虚拟机(JVM)专栏系列:深入剖析 JVM 的工作原理和优化方法。
  6. Java 学习路线专栏系列:为不同阶段的学习者规划清晰的学习路径。
  7. JVM 万亿性能密码:在数字世界的浩瀚星海中,JVM 如神秘宝藏,其万亿性能密码即将开启奇幻之旅。
  8. AI(人工智能)专栏系列:紧跟科技潮流,介绍人工智能的应用和发展趋势。
  9. 智创 AI 新视界专栏系列(NEW):深入剖析 AI 前沿技术,展示创新应用成果,带您领略智能创造的全新世界,提升 AI 认知与实践能力。
  10. 数据库核心宝典:构建强大数据体系专栏系列:专栏涵盖关系与非关系数据库及相关技术,助力构建强大数据体系。
  11. MySQL 之道专栏系列:您将领悟 MySQL 的独特之道,掌握高效数据库管理之法,开启数据驱动的精彩旅程。
  12. 大前端风云榜:引领技术浪潮专栏系列:大前端专栏如风云榜,捕捉 Vue.js、React Native 等重要技术动态,引领你在技术浪潮中前行。

三、【青云交技术圈福利社群】【架构师社区】的精华频道:

  1. 福利社群:无论你是技术萌新还是行业大咖,这儿总有契合你的天地,助力你于技术攀峰、资源互通及人脉拓宽之途不再形单影只。 点击快速加入福利社群 CSDN 博客之星 创作交流营(NEW)
  2. 今日看点:宛如一盏明灯,引领你尽情畅游社区精华频道,开启一场璀璨的知识盛宴。
  3. 今日精品佳作:为您精心甄选精品佳作,引领您畅游知识的广袤海洋,开启智慧探索之旅,定能让您满载而归。
  4. 每日成长记录:细致入微地介绍成长记录,图文并茂,真实可触,让你见证每一步的成长足迹。
  5. 每日荣登原力榜:如实记录原力榜的排行真实情况,有图有真相,一同感受荣耀时刻的璀璨光芒。
  6. 每日荣登领军人物榜:精心且精准地记录领军人物榜的真实情况,图文并茂地展现,让领导风采尽情绽放,令人瞩目。
  7. 每周荣登作者周榜:精准记录作者周榜的实际状况,有图有真相,领略卓越风采的绽放。

       展望未来,我誓做前沿技术的先锋,于人工智能、大数据领域披荆斩棘。持续深耕,输出独家深度专题,为你搭建通往科技前沿的天梯,助你领航时代,傲立潮头。

       即将开启技术挑战与代码分享盛宴,以创新形式激活社区,点燃技术热情。让思维碰撞,迸发智慧光芒,照亮探索技术巅峰的征途。

       珍视你的每一条反馈,视其为前行的灯塔。精心雕琢博客内容,精细优化功能体验,为你打造沉浸式知识殿堂。拓展多元合作,携手行业巨擘,汇聚海量优质资源,伴你飞速成长。

       期待与你在网络空间并肩同行,共铸辉煌。你的点赞,是我前行的动力;关注,是对我的信任;评论,是思想的交融;打赏,是认可的温暖;订阅,是未来的期许。这些皆是我不断奋进的力量源泉。

       衷心感谢每一位支持者,你们的互动,推动我勇攀高峰。诚邀访问 我的博客主页青云交技术圈福利社群架构师社区 ,如您对涨粉、技术交友、技术交流、内部学习资料获取、副业发展、项目外包和商务合作等方面感兴趣,欢迎在文章末尾添加我的微信名片 QingYunJiao (点击直达) ,添加时请备注【CSDN 技术交流】。更多精彩内容,等您解锁。

       让我们携手踏上知识之旅,汇聚智慧,打造知识宝库,吸引更多伙伴。未来,与志同道合者同行,在知识领域绽放无限光彩,铸就不朽传奇!
在这里插入图片描述


引言

亲爱的 Java大数据爱好者们,大家好!在当今这个科技飞速发展、数据呈爆炸式增长的时代,新技术如璀璨星辰般不断涌现,各领域之间的融合也日益加深。回顾此前的系列文章,我们曾在《通义万相 2.1 携手蓝耘云平台:开启影视广告创意新纪元》中,深入探究了影视广告行业如何借助通义万相 2.1 与蓝耘云平台实现技术革新,详细解读了其中的技术要点、独特优势、面临的挑战,并附上了实用的实操指南,为影视广告创意注入了新的活力。在《Java 大视界 —— Java 大数据在智能政务公共服务资源优化配置中的应用(118)》里,我们聚焦于 Java 大数据在智能政务领域的应用,剖析了现状与挑战,清晰阐述了 Java 大数据的优势、应用场景及技术架构,还通过实际案例展示了显著成效,并对知识图谱补全技术的后续应用进行了展望。《Java 大视界 —— Java 大数据中的知识图谱补全技术与应用实践(119)》则凭借丰富的案例和完整的代码,全方位剖析了 Java 大数据中知识图谱补全技术,涵盖原理、应用、挑战及应对策略,堪称技术佳作。而在《Java 大视界 – Java 大数据在智能家居能源管理与节能优化中的应用(120)》中,我们领略到 Java 大数据如何赋能智能家居能源管理,从技术细节到实际案例与代码,都为该领域提供了极具价值的参考。

如今,大数据实时数据处理已成为推动各行业发展的关键力量。在这个背景下,基于 Java 的大数据实时数据处理框架因其卓越的性能和广泛的适用性,受到了开发者们的高度关注。本文将深入探讨此类框架的性能评测方法,并给出科学、实用的选型建议,助力开发者在大数据的浪潮中做出精准决策。

在这里插入图片描述

正文

一、大数据实时数据处理框架概述

在大数据时代,数据的产生速度呈指数级增长,传统的数据处理方式已难以满足实时性的要求。大数据实时数据处理框架应运而生,它能够对源源不断产生的数据进行快速采集、传输、分析和处理,为企业提供及时、准确的决策支持。

以电商和金融领域为例,在电商行业,实时处理用户的浏览、购买等行为数据,可以实现精准的商品推荐,提高用户的购物体验和购买转化率。在金融领域,实时监测交易数据,能够及时发现异常交易,保障资金安全,防范金融风险。

在这里插入图片描述

二、基于 Java 的主流大数据实时数据处理框架介绍

2.1 Apache Flink

Apache Flink 是一款分布式流批一体化处理框架,以其高吞吐量、低延迟的特性脱颖而出。它支持事件时间语义,能够精确处理乱序到达的数据,确保数据处理的准确性和及时性。

代码示例 1:基本数据读取与打印

import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;

public class FlinkExample {
   
    public static void main(String[] args) throws Exception {
   
        // 获取流执行环境,这是 Flink 程序的入口点
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        // 从本地端口 9999 读取文本流数据,这里模拟数据源
        DataStreamSource<String> stream = env.socketTextStream("localhost", 9999);
        // 将读取到的数据打印输出,方便调试和查看结果
        stream.print();
        // 执行流处理任务,启动 Flink 程序
        env.execute("Flink Streaming Example");
    }
}

代码示例 2:复杂业务逻辑实现 - 词频统计

import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;

import java.util.Arrays;

public class FlinkWordCountExample {
   
    public static void main(String[] args) throws Exception {
   
        // 获取流执行环境
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        // 从本地端口 9999 读取文本流数据
        DataStreamSource<String> stream = env.socketTextStream("localhost", 9999);

        // 将每行文本按空格拆分,扁平化输出单词
        SingleOutputStreamOperator<String> words = stream.flatMap((String line, Collector<String> out) -> {
   
            Arrays.stream(line.split(" ")).forEach(out::collect);
        });

        // 将每个单词映射为 <单词, 1> 的键值对,方便后续统计
        SingleOutputStreamOperator<WordWithCount> wordCounts = words.map(word -> new WordWithCount(word, 1))
               .keyBy(WordWithCount::getWord) // 按单词进行分组
               .sum("count"); // 对每个分组内的计数进行求和

        // 打印统计结果
        wordCounts.print();
        // 执行流处理任务
        env.execute("Flink WordCount Example");
    }

    // 自定义类,用于存储单词和对应的计数
    public static class WordWithCount {
   
        private String word;
        private int count;

        public WordWithCount() {
   }

        public WordWithCount(String word, int count) {
   
            this.word = word;
            this.count = count;
        }

        public String getWord() {
   
            return word;
        }

        public void setWord(String word) {
   
            this.word = word;
        }

        public int getCount() {
   
            return count;
        }

        public void setCount(int count) {
   
            this.count = count;
        }

        @Override
        public String toString() {
   
            return "WordWithCount{" +
                    "word='" + word + '\'' +
                    ", count=" + count +
                    '}';
        }
    }
}

在实际应用中,阿里巴巴等大型互联网企业广泛使用 Flink 对海量的商品交易数据进行实时分析。为了进一步提升 Flink 的性能,阿里巴巴会对集群资源进行精细化管理。例如,根据不同业务时段的数据流量峰值,动态调整 Flink 集群的资源分配,在流量高峰时增加计算资源,保障数据处理的高效性。同时,优化 Flink 的内存管理,合理设置堆内存和堆外内存的比例,减少垃圾回收对性能的影响。在电商大促活动期间,数据流量会瞬间剧增,阿里巴巴通过自动扩展 Flink 集群的节点数量,确保每秒能处理数千万条交易数据,保证商品推荐、库存监控等实时业务的稳定运行。

2.2 Apache Storm

Apache Storm 是最早出现的大数据实时处理框架之一,具有强大的容错能力和可扩展性。它采用了分布式的拓扑结构,能够高效地处理大规模数据。

Storm 拓扑示例代码

import org.apache.storm.Config;
import org.apache.storm.LocalCluster;
import org.apache.storm.topology.TopologyBuilder;
import org.apache.storm.tuple.Fields;
import org.apache.storm.tuple.Values;
import org.apache.storm.utils.Utils;
import org.apache.storm.topology.BasicOutputCollector;
import org.apache.storm.topology.OutputFieldsDeclarer;
import org.apache.storm.topology.base.BaseBasicBolt;
import org.apache.storm.topology.base.BaseRichSpout;
import org.apache.storm.spout.SpoutOutputCollector;
import org.apache.storm.task.TopologyContext;
import org.apache.storm.topology.OutputFieldsDeclarer;
import org.apache.storm.tuple.Tuple;

import java.util.Map;
import java.util.Random;

public class StormExample {
   
    // 自定义 Spout,用于生成随机句子
    public static class 
评论 23
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

青云交

优质创作不易,期待你的打赏。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值