python科学计算之numpy

### 简介
NumPy是Python中一个强大的科学计算库,它提供了N维数组对象和各种高效的数组运算。
此外,NumPy还支持切片和索引操作,以及广播功能。
NumPy在数据科学、机器学习、深度学习和其他数值计算方面都有着广泛的应用。
对于科学计算和数据分析来说,Python本身的功能并不足够。因此,NumPy的出现填补了这一缺口。


#### 一、数组
NumPy最重要的特性之一就是:N维数组对象(ndarrays)。数组是一种高效的数据结构,其中所有的元素都是同一种数据类型。数组可以是任何维度的,从简单的一维数组到高维数组,比如在机器学习中非常常见的矩阵和张量。有了NumPy,可以快速地创建各种各样的数组并进行高效的矩阵运算。

下面是一些创建NumPy数组的方式:
```text
import numpy as np

a = np.zeros((2, 3)) # 创建一个2x3的全0矩阵
b = np.ones((1, 2)) # 创建一个1x2的全1矩阵
c = np.full((2, 2), 7) # 创建一个2x2的常数矩阵
d = np.eye(3) # 创建一个3x3的对角矩阵
e = np.random.random((2, 2)) # 创建一个2x2的随机矩阵

```


#### 二、数组运算
NumPy的数组运算是其核心功能之一。它支持各种各样的矩阵运算,以及基于数组的数学函数。下面是一些例子:
```text
import numpy as np

a = np.array([1, 2, 3])
b = np.array([4, 5, 6])

# 元素加法
c = a + b  # [5 7 9]

# 元素乘法
d = a * b  # [4 10 18]

# 矩阵乘法(使用dot方法)
e = np.dot(a, b)  # 32

# 求和
f = np.sum(a)  # 6

# 平均值
g = np.mean(a)  # 2

# 标准差
h = np.std(a)  # 0.81649658092772603

```


#### 三、切片和索引
在NumPy中,可以使用切片和索引来访问数组中的元素。这与Python的其他序列类似。以下是一些例子:
```text
import numpy as np

a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

# 使用索引访问单个元素
print(a[0, 0])  # 输出1
print(a[1, 2])  # 输出6

# 使用切片访问一个范围的元素
print(a[0, :])  # 输出[1 2 3]
print(a[:, 1])  # 输出[2 5 8]

# 使用切片修改一个范围的元素
a[0, :] = 0  # 将第1行所有元素设置为0

# 使用布尔索引进行过滤
b = np.array([2, 4, 6, 8, 10])
c = b[b % 4 == 0]  # 输出[4 8]

```


### 四、广播
广播是NumPy的另一个强大的特性,它可以使形状不同的数组执行二进制运算。例如,可以将一个标量(一维数组)与一个二维数组相加。NumPy会自动扩展标量到与数组相同的形状。以下是一个例子:
```text
import numpy as np

a = np.array([[1, 2], [3, 4]])
b = 5

c = a + b  # 自动将b扩展到[5, 5]

```
在这个例子中,b被扩展成了一个2x2的数组,它的所有元素都是5。现在,a和b的形状相同了,就可以执行加法了。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值