### 简介 NumPy是Python中一个强大的科学计算库,它提供了N维数组对象和各种高效的数组运算。 此外,NumPy还支持切片和索引操作,以及广播功能。 NumPy在数据科学、机器学习、深度学习和其他数值计算方面都有着广泛的应用。 对于科学计算和数据分析来说,Python本身的功能并不足够。因此,NumPy的出现填补了这一缺口。 #### 一、数组 NumPy最重要的特性之一就是:N维数组对象(ndarrays)。数组是一种高效的数据结构,其中所有的元素都是同一种数据类型。数组可以是任何维度的,从简单的一维数组到高维数组,比如在机器学习中非常常见的矩阵和张量。有了NumPy,可以快速地创建各种各样的数组并进行高效的矩阵运算。 下面是一些创建NumPy数组的方式: ```text import numpy as np a = np.zeros((2, 3)) # 创建一个2x3的全0矩阵 b = np.ones((1, 2)) # 创建一个1x2的全1矩阵 c = np.full((2, 2), 7) # 创建一个2x2的常数矩阵 d = np.eye(3) # 创建一个3x3的对角矩阵 e = np.random.random((2, 2)) # 创建一个2x2的随机矩阵 ``` #### 二、数组运算 NumPy的数组运算是其核心功能之一。它支持各种各样的矩阵运算,以及基于数组的数学函数。下面是一些例子: ```text import numpy as np a = np.array([1, 2, 3]) b = np.array([4, 5, 6]) # 元素加法 c = a + b # [5 7 9] # 元素乘法 d = a * b # [4 10 18] # 矩阵乘法(使用dot方法) e = np.dot(a, b) # 32 # 求和 f = np.sum(a) # 6 # 平均值 g = np.mean(a) # 2 # 标准差 h = np.std(a) # 0.81649658092772603 ``` #### 三、切片和索引 在NumPy中,可以使用切片和索引来访问数组中的元素。这与Python的其他序列类似。以下是一些例子: ```text import numpy as np a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) # 使用索引访问单个元素 print(a[0, 0]) # 输出1 print(a[1, 2]) # 输出6 # 使用切片访问一个范围的元素 print(a[0, :]) # 输出[1 2 3] print(a[:, 1]) # 输出[2 5 8] # 使用切片修改一个范围的元素 a[0, :] = 0 # 将第1行所有元素设置为0 # 使用布尔索引进行过滤 b = np.array([2, 4, 6, 8, 10]) c = b[b % 4 == 0] # 输出[4 8] ``` ### 四、广播 广播是NumPy的另一个强大的特性,它可以使形状不同的数组执行二进制运算。例如,可以将一个标量(一维数组)与一个二维数组相加。NumPy会自动扩展标量到与数组相同的形状。以下是一个例子: ```text import numpy as np a = np.array([[1, 2], [3, 4]]) b = 5 c = a + b # 自动将b扩展到[5, 5] ``` 在这个例子中,b被扩展成了一个2x2的数组,它的所有元素都是5。现在,a和b的形状相同了,就可以执行加法了。
python科学计算之numpy
于 2019-03-12 20:45:46 首次发布