数据结构之堆的相关知识详解



堆的概念及结构

用数组存储表示的完全二叉树

小根堆:树中所有父亲都小于等于孩子,根是最小值

image-20210901114132773

大根堆:树中所有父亲都大于等于孩子,根是最大值

image-20210901114331083

堆的性质:

堆中某个节点的值总是不大于或不小于其父节点的值;
堆总是一棵完全二叉树。


堆的实现

堆向下调整算法

我们给出一个数组,逻辑上看做一颗完全二叉树。我们通过从根节点开始的向下调整算法可以把它调整成一个小堆。向下调整算法有一个前提:左右子树必须是一个堆,才能调整。

int array[] = {27,15,19,18,28,34,65,49,25,37};

image-20210901154040361

上图为向下调整算法调整为小堆的图解

1、从根开始,不断往下调

2、选出左右孩子中较小的,跟父亲比较,如果比父亲小,跟父亲交换,以小的孩子位置继续往下调。如果比父亲大,则停止

代码如下:

void swap(int *p1,int *p2)
{
    int temp=*p1;
    *p1=*p2;
    *p2=temp;
}
void AdjustDown(int *a,int n,int parent)
{
   	int child=parent*2+1; //左孩子,左孩子+1即为右孩子
    while(child<n)
    {
        //选择出左右孩子中较小/大的那个
        //小堆
        if(child+1<n && a[child+1]<a[child])//右孩子存在(防止越界)且如果右孩子比左孩子小
        {
            child++;//那就下标来到右孩子
        }
        
        if(a[child]<a[parent])//小的孩子小于父亲就交换,继续调整
        {
            swap(&a[parent],&a[child]);
            parent=child;
            child=parent*2+1;
        }
        else//小的孩子比父亲大或相等,则不处理,调整结束
        {
            break;
        }
    }
}

堆向上调整算法

void swap(int *p1,int *p2)
{
    int temp=*p1;
    *p1=*p2;
    *p2=temp;
}
void AdjustUp(HPDataType *a,int child)
{
    int parent = (child-1)/2;
    //while(parent>=0) 不对的,parent不会小于0
    while(child > 0)
    {
        if(a[parent]<a[child])
        {
            swap(&a[parent],&a[child]);
            child=parent;
            parent=(child-1)/2;
        }
        else
        {
            break;
        }
    }
}

向上调整算法我们找当前结点的父亲,假如我们调小堆时,如果父亲结点值大于它,则交换,然后进行迭代继续调整,注意我们进行迭代的条件是child>0,如果父亲结点值小于它,则调整结束,此时它已经是小堆


堆的创建

那么如果不满足左右子树是堆,不能直接用向下调整算法,怎么办呢?下面我们给出一个数组,这个数组逻辑上可以看做一颗完全二叉树,但是还不是一个堆,现在我们通过算法,把它构建成一个堆。根节点左右子树不是堆,我们怎么调整呢?这里我们从倒数的第一个非叶子节点的子树开始调整,一直调整到根节点的树,就可以调整成堆。

int array[] = {2,5,8,6,4,7};

image-20210901155927395

建堆代码:

  • 向下调整算法建堆:
void swap(int *p1,int *p2)
{
    int temp=*p1;
    *p1=*p2;
    *p2=temp;
}
void AdjustDown(int *a,int n,int parent)
{
   	int child=parent*2+1; //左孩子,左孩子+1即为右孩子
    while(child<n)
    {
        //选择出左右孩子中较小/大的那个
        //小堆
        if(child+1<n && a[child+1]<a[child])//右孩子存在(防止越界)且如果右孩子比左孩子小
        {
            child++;//那就下标来到右孩子
        }
        
        if(a[child]<a[parent])//小的孩子小于父亲就交换,继续调整
        {
            swap(&a[parent],&a[child]);
            parent=child;
            child=parent*2+1;
        }
        else//小的孩子比父亲大或相等,则不处理,调整结束
        {
            break;
        }
    }
}
int main()
{
    int a[]={2,5,8,6,4,7};
    int n=sizeof(a)/sizeof(a[0]);
    //1、建堆
    int i=0;
    //为了满足向下调整条件,从最后一个非叶子结点开始调整,从下往上调整
    for(i=(n-1-1)/2;i>=0;--i)//最后一个结点的父亲是最后一个非叶子结点
    {
        AdjustDown(a,n,i);//O(N)
    }
}

我们从倒数的第一个非叶子节点的子树开始调整,一直调整到根节点的树,就可以调整成堆

  • 向上调整算法建堆
void swap(int *p1,int *p2)
{
    int temp=*p1;
    *p1=*p2;
    *p2=temp;
}
void AdjustUp(HPDataType *a,int child)
{
    int parent = (child-1)/2;
    //while(parent>=0) 不对的,parent不会小于0
    while(child > 0)
    {
        if(a[parent]<a[child])
        {
            swap(&a[parent],&a[child]);
            child=parent;
            parent=(child-1)/2;
        }
        else
        {
            break;
        }
    }
}  
int main()
{
    int a[]={2,5,8,6,4,7};
    int n=sizeof(a)/sizeof(a[0]);
	for(int i=0;i<n;i++)
    {
        AdjustUp(a,i);
    } 
    return 0;
}

向上调整算法我们从第一个结点开始调整,直到最后一个结点

建堆的时间复杂度

因为堆是完全二叉树,而满二叉树也是完全二叉树,此处为了简化使用满二叉树来证明(时间复杂度本来看的就是近似值,多几个节点不影响最终结果):

每层结点个数*最坏情况向下的调整次数

image-20210901160417065

因此,建堆的时间复杂度为O(N)。


堆的结构

typedef int HPDataType;
typedef struct Heap
{
	HPDataType* _a;
	int _size;
	int _capacity;
}Heap;

我们给出一个_a指针指向动态开辟的内存,这块内存用来存储数据,_size用来保存当前数据的个数,_capacity用来保存当前的容量


堆的构建

// 堆的构建
void HeapCreate(Heap* hp, HPDataType* a, int n)
{
	assert(hp);
	hp->_a = (HPDataType*)malloc(sizeof(HPDataType) * n);
	if (hp->_a == NULL)
	{
		perror("malloc");
		return;
	}
	memcpy(hp->_a, a, (sizeof(HPDataType) * n));
	hp->_size = hp->_capacity = n;
	//建堆
	for (int i = (n - 1 - 1) / 2; i >= 0; i--)
	{
		AdjustDown(hp->_a, n, i);
	}
}

我们构建堆时,可以将初始化的数据以参数形式传进来,利用memcpy函数进行拷贝,将size和capacity进行更新,并进行建堆


堆的销毁

// 堆的销毁
void HeapDestory(Heap* hp)
{
	assert(hp);
	free(hp->_a);
	hp->_a = NULL;
	hp->_capacity = hp->_size = 0;
}

堆的插入

//插入x,保持它继续是堆
void HeapPush(HP* php,HPDataType x)
{
    assert(php);
    //首先看数组空间够不够,不够就要扩容
    if(php->size==php->capacity)
    {
        HPDataType* temp = (HPDataType*)realloc(php->a,php->capacity*2*sizeof(HPDataType));
        if(temp==NULL)
        {
            perror("malloc");
            return;
        }
        php->capacity*=2;
        php->a=temp;
    }
    php->a[size]=x;
  	php->size++;
    AdjustUp(php->a,php->size-1);
}

在进行插入时,我们首先要看数组空间够不够,不够就要扩容,我们每次扩容两倍,扩容完成后,将数组最后元素后面的位置添加新元素,因为我们还要保持继续是堆,故我们将它向上调整一次

image-20210904104217051


堆的删除

//删除堆顶的数据,删除后保持它继续是堆
void HeapPop(HP* php)
{
    assert(php);
    assert(!HeapEmpty(php));
    swap(&php->a[0],&php->a[php->size-1]);
    php->size--;
    AdjustDown(php->a,php->size,0);
}

image-20210904104831194

1.将堆顶元素与堆中最后一个元素进行交换

2.删除堆中最后一个元素

3.将堆顶元素向下调整到满足堆特性为止


取堆顶的数据

// 取堆顶的数据
HPDataType HeapTop(Heap* hp)
{
	assert(hp);
	return hp->_a[0];
}

堆的数据个数

// 堆的数据个数
int HeapSize(Heap* hp)
{
	assert(hp);
	return hp->_size;
}

堆的判空

// 堆的判空
int HeapEmpty(Heap* hp)
{
	assert(hp);
	return hp->_size == 0;
}

堆的打印

void HeapPrint(Heap* hp)
{
	assert(hp);
	for (int i = 0; i < hp->_size; i++)
	{
		printf("%d ", hp->_a[i]);
	}
	printf("\n");
}

堆的应用

堆排序

堆排序分两个步骤:

1、建堆

2、排序

那么我们排升序建大堆还是建小堆呢?答案是建大堆。

升序为什么不能建小堆呢?

建堆选出最小的数,花了O(N)的时间复杂度,紧接着如何选次小的数呢?剩下的数父子关系全乱了,向下调整需要满足左右子树都是堆,但是关系都乱了,左右子树可能都不满足向下调整的条件了,故剩下的N-1个数只能重新建堆,效率太低了

升序建大堆

1、选出了最大的数,把最大的数与最后的数交换

2、紧接着选出次大的数,与倒数第二个位置的数交换…

因为堆结构没有破坏,最后一个数不看作堆里面,左右子树依旧是大堆,向下调整即可,选出第二大

建大堆完成后,排序的步骤如图:

image-20210901162302655

排序代码如下:

#include<stdio.h>
void swap(int *p1,int *p2)
{
    int temp=*p1;
    *p1=*p2;
    *p2=temp;
}
//左右子树都是小堆或者大堆
void AdjustDown(int *a,int n,int parent)
{
   	int child=parent*2+1; //左孩子,左孩子+1即为右孩子
    while(child<n)
    {
        //选择出左右孩子中较小/大的那个
        //小堆
        if(child+1<n && a[child+1]>a[child])//右孩子存在(防止越界)且如果右孩子比左孩子小
        {
            child++;//那就下标来到右孩子
        }
        
        if(a[child]>a[parent])//小的孩子小于父亲就交换,继续调整
        {
            swap(&a[parent],&a[child]);
            parent=child;
            child=parent*2+1;
        }
        else//小的孩子比父亲大或相等,则不处理,调整结束
        {
            break;
        }
    }
}
//排序(升序),排升序要建大堆,排降序要建小堆
void HeapSort(int *a,int n)
{
    //1、建堆
    int i=0;
    //为了满足向下调整条件,从最后一个非叶子结点开始调整,从下往上调整
    for(i=(n-1-1)/2;i>=0;--i)//最后一个结点的父亲是最后一个非叶子结点
    {
        AdjustDown(a,n,i);//O(N)
    }
    //2、排序
    int end=n-1;
    while(end>0)
    {
        swap(&a[0],&a[end]);
        AdjustDown(a,end,0);//O(nlogn),一次向下调整为层数次 即logn次,while循环一共调整n次,故是nlogn
        end--;
    }
}
int main()
{
    int a[]={2,5,8,6,4,7};
    int n=sizeof(a)/sizeof(a[0]);
    HeapSort(a,n);
    int i =0;
    for(i=0;i<n;i++)
    {
        printf("%d ",a[i]);
    }
    return 0;
}

堆排序时间复杂度O(N*logN)

欢迎大家学习讨论!

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小赵小赵福星高照~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值