Atiitt 常见机器算法 理解 总结
目录
1. 机器学习的核心是“使用算法解析数据,从中学习,然后对世界上的某件事情做出决定或预测” 1
2.1. ①符号主义:使用符号、规则和逻辑来表征知识和进行逻辑推理,最喜欢的算法是:规则和决策树 2
2.2. ②贝叶斯派:获取发生的可能性来进行概率推理,最喜欢的算法是:朴素贝叶斯或马尔可夫 2
3.1. 线性回归是机器学习中最基础的一个算法。虽然线性回归是最简单的机器学习算法之一 2
。这意味着,与其显式地编写程序来执行某些任务,不如教计算机如何开发一个算法来完成任务。有三种主要类型的机器学习:监督学习、非监督学习和强化学习,所有这些都有其特定的优点和缺点
③联结主义:使用概率矩阵和加权神经元来动态地识别和归纳模式,最喜欢的算法是:神经网络
④进化主义:生成变化,然后为特定目标获取其中最优的,最喜欢的算法是:遗传算法
⑤Analogizer:根据约束条件来优化函数(尽可能走到更高,但同时不要离开道路),最喜欢的算法是:支持向量机
线性回归是机器学习中最基础的一个算法。虽然线性回归是最简单的机器学习算法之一,但是其包含了几乎所有的机器学习算法中需要的步骤:数据预处理,假设函数,代价函数,优化方法,模型测试。也可谓是麻雀虽小,五脏俱全。
之前写过一篇关于K-Means聚类的文章,博文链接:机器学习算法-K-means聚类。关于K-Means的推导,里面有着很强大的EM思想。
8种常见机器学习算法比较 _ 雷锋网.html
常见几种机器学习算法的优缺点 - 简书.html
三张图读懂机器学习:基本概念、五大流派与九种常见算法 - 专栏 - 创业邦.html