源领域和目标领域过程相似性分析

本文探讨了过程相似性的定义,分为基于属性和基于模型的表示方法,并详细介绍了属性相似性和模型相似性的多种分类。同时,文章讨论了过程相似性度量的重要性和常用方法,如KL散度、布雷格曼散度和最大均值差异,这些方法用于量化源领域和目标领域之间的分布差异,为模型迁移学习提供依据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 过程相似性定义

       Lu等在《Process Similarity and Developing New Process Models Through Migration》根据有限的过程属性集,或者根据这些属性之间的关系来描述特定过程,分为基于属性的表示方法和基于模型的表示方法。基于属性的表示方法是利用有限属性及其属性值来表示,主要关注工艺设备和过程条件;基于模型的表示方法是利用过程属性之间的关系来表示,主要反映过程条件和输出特性之间的关系。这两种类型的过程表示将过程相似性分类为如下图所示。

(1)过程相似性

        定义1:具有相同结构的两个过程被认为属于一种类型,并且表示为结构相似;否则,这些过程在结构上是不同的。显然,属于一种类型的过程在集合中具有相同数量的属性,并且两个集合中的属性是对属性。

       下式给出了两个磨矿分级过程的实例,两者都具有相同的生产组件,例如旋流器,矿池,给矿泵等,因此这两个过程在结构上相似。其中上标1和2分别代表过程1和2。显然,这两个过程在结构上相似是模型迁移的前提条件。

        定义2:如果它们彼此对应并且它们与属性集中的其他属性处于相同的关系,则将不同过程的两个属性表示为对属性。如定义1,公式中的属性旋流器1和旋流器2是对属性。

(2)基于属性的表示

          定义:过程P由基于属性的表示中的一组过程属性和属性值表示,定义为:

          其中,A是一组有限的过程属性,反映了过程的性质,包括进料,操作设备,环境条件等;V是对应的属性值。

(3)基于模型的表示

          定义:一个过程由一组过程条件,质量属性及其在基于模型的表示中的关系表示:

           其中,X是一组操作条件或输入变量;Y是一组质量变量,响应变量或输出变量; R是由过程原理控制的X和Y之间的关系。通常,R可以通过任何建模方法开发。

(4)基于属性相似性分类

         定义1:如果两个过程对属性的全部或部分具有相似的值,则称两个过程具有属性相似性。否则,当没有值匹配时,过程就不同了。属性相似性可以分为比例相似性,包含相似性和家庭相似性。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值