介绍一种音频信号分类方法

本文介绍了音频分类的一种方法,通过结合子带音调个数比与频谱倾斜度来区分语音和音乐信号。首先,分析了不同音频类型在子带音调分布上的差异,并提出利用频谱倾斜度特征来弥补单纯子带音调区分的不足。接着详细阐述了子带音调个数比的计算和平滑处理,以及频谱倾斜度的估算和判断标准。最后,提出使用平滑技术来处理分类过程中的单帧误判问题,提高分类准确性。
摘要由CSDN通过智能技术生成

    能用来区分语音和音乐信号的音频特征有很多种,如感觉特性、能量、功率谱和Mel频标倒谱(MFCC)系数,能量、平均过零率、基频和功率谱峰值等。以下介绍一种基于子带音调个数比与频谱倾斜度相结合的区分方法。

一、基本原理

    不同类型的音频,其音调分量在各个子带的分布有所不同。语音的音调分量绝大部分分布在低频处,而音乐的音调分量在各个子带的分布则相对较均匀。利用该特性可区分音乐与语音信号。

由于某些敲打式的突变音乐信号,其音调分布特性较接近于语音的音调分布特性。因此仅用子带音调分量区分准确度不高。为解决这一问题,引入频谱倾斜度特征。一般来说,语音与音乐的平均频谱倾斜度主要分布在[0.650,0.995]的范围内,但对于一些敲打式的突变音乐信号,其频谱倾斜度的值很小,小于0.650。另外,有些音乐频谱倾斜度的值可达到很高,大于0.995。该特性能较好的区分子带音调分量不能区分的突变音乐信号。

 

二、方法实现

 

2.1子带音调个数比

    对信号进行分帧处理,帧长为N。用汉明窗对每帧输入时域信号进行加窗,然后对加窗信号进行FFT变换,并计算其功率密度谱X(k),x(k)也称为频谱系数。由于FFT是关于N12对称的N/2,因此只需计算前N/2个频谱。

    将频域划分为4个子带SBi,分别为 [0,N/16],[N/16,N/8],[N/8,N/4]和[N/4,N/2]。当频谱系数X(k)符合X(k-1)<X(k)<

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值