为了方便读者朋友们通过观看视频的方式自学运筹学与最优化的相关内容,本文列出了一些可供参考的在线课程。在线课程非常多,本文仅仅列出了其中的一部分,读者朋友们也可以在网上自行搜索,然后根据自己的喜好进行选择。
中国人民解放军理工大学刘华丽老师的《运筹学》中文课程逻辑清晰、语言流畅,课程理论坡度平缓,特别适合入门学习。课程的视频见课程 25。

课程 25 中国人民解放军理工大学刘华丽老师的《运筹学》中文课程,网址为:https://www.bilibili.com/video/BV1qJ411D7m6?p=1
维多利亚大学的陆吾生教授的《最优化方法及其应用》中文课程内容详尽、分析透彻、语言生动,课程的视频见课程 26。

课程 26 维多利亚大学的陆吾生教授的《最优化方法及其应用》中文课程,网址为:https://www.bilibili.com/video/BV1ds411y76j?p=1
中山大学的凌青教授(曾经在中国科学技术大学工作)的《最优化理论》中文课程侧重于凸优化方面的内容,条理清晰,善于用实际的例子进行阐述,非常具有吸引力,课程视频见课程 27。

课程 27 中山大学的凌青教授的《最优化理论》中文课程,网址为:https://www.bilibili.com/video/BV1Jt411p7jE?p=1
斯坦福大学Stephen Boyd教授的《凸优化》英文课程是凸优化领域里面非常著名的课程之一。作者著有经典教材《Convex Optimization》,受到广大学习者的喜爱。该课程的视频见课程 28。

课程 28 斯坦福大学Stephen Boyd教授的《Convex Optimization》英文课程,网址为:https://www.bilibili.com/video/BV1ct411i7j3?p=1
关于人工智能中运筹学与最优化的更多介绍,可以购买《人工智能怎么学》进一步阅读。

图书购买方式
京东:https://item.jd.com/13395339.html
当当:http://product.dangdang.com/29469230.html
天猫:https://detail.tmall.com/item_o.htm?id=687374654836
为了让图书惠及更多的读者,为更多想学习人工智能的人提供帮助,经过向出版社申请,对图书《人工智能怎么学》的部分内容进行改编和连载。图书《人工智能怎么学》的全部内容包含了初级入门、中阶提高以及高级进阶三个级别的内容。连载的内容主要是初级入门级别,适合想对人工智能进行快速和高效入门的读者,对于已有一定的人工智能学习基础,希望进一步进阶或提高的读者,则需要购买图书《人工智能怎么学》,学习中阶提高以及高级进阶的内容。此外,对于学习人工智能感兴趣的读者,也可以加入知识星球《人工智能怎么学》,知识星球是一个构建学习社群的平台,通过加入《人工智能怎么学》的社群,你将获得更多的学习资料和课程信息。
与作者互动和了解更多信息
想跟作者一起学习人工智能和互动,你可以加入如下社群:
知识星球:https://t.zsxq.com/0aLkVg0os
QQ群:600587177
想了解更多关于人工智能学习及实践的内容,请关注如下媒体:
官方网站:https://bigdatamininglab.github.io
官方微信公众号:人工智能怎么学(可扫描下方二维码或者微信搜索“人工智能怎么学”添加关注)
CSDN:https://blog.csdn.net/audyxiao001
参考文献
张文俊. 数学欣赏[M]. 北京: 科学出版社, 2011.
李文林. 数学史概论 第4版[M]. 北京: 高等教育出版社, 2021.
方开泰. 漫漫修远攻算路:方开泰自述[M]. 长沙: 湖南教育出版社, 2016.
徐品方. 数学王子——高斯[M]. 哈尔滨: 哈尔滨工业大学出版社, 2018.
同济大学数学系. 高等数学(第7版)[M]. 北京: 高等教育出版社, 2014.
李忠,周建莹. 高等数学(第2版)[M]. 北京: 北京大学出版社, 2009.
Joel Hass et al.Thomas’ Calculus: Early Transcendentals (Fourteenth Edition)[M]. Pearson, 2018.
Ron Larson, and Bruce Edwards. Calculus (Eleventh Edition)[M]. Cengage Learning, 2018.
华东师范大学数学科学学院. 数学分析(第5版)[M]. 北京: 高等教育出版社, 2019.
常庚哲, 史济怀. 数学分析教程(第3版)[M]. 合肥: 中国科学技术大学出版社, 2012.
Walter Rudin. Principles of Mathematical Analysis (ThirdEdition) [M]. McGraw-Hill Education, 1976.
Vladimir A. Zoric. Mathematical Analysis (Second Edition)[M]. Springer, 2016.
Elias M. Stein, and RamiShakarchi. Real Analysis: Measure Theory, Integration, and Hilbert Spaces [M]. Princeton University Press,2004.
Elias M. Stein, and Rami Shakarchi. Complex Analysis [M]. Princeton University Press,2005.
Elias M. Stein, and Rami Shakarchi. Fourier Analysis: AnIntroduction [M]. PrincetonUniversity Press,2003.
Elias M. Stein, and Rami Shakarchi. Functional Analysis:Introduction to Further Topics in Analysis[M]. Princeton University Press, 2011.
丘维声. 简明线性代数[M]. 北京: 北京大学出版社, 2002.
居于马. 线性代数(第2版)[M]. 北京: 清华大学出版社, 2002.
李尚志. 线性代数[M]. 北京: 高等教育出版社, 2002.
李炯生. 线性代数(第2版)[M]. 合肥: 中国科学技术大学出版社, 2010.
龚昇. 线性代数(第2版)[M]. 合肥: 中国科学技术大学出版社, 2005.
任广千, 谢聪, 胡翠芳. 线性代数的几何意义[M]. 西安: 西安电子科技大学出版社, 2015.
Kuldeep Singh. Linear Algebra: Step by Step [M]. OxfordUniversity Press,2014.
Gilbert Strang. Introduction to Linear Algebra (FifthEdition) [M]. Wellesley-Cambridge Press, 2016.
David C. Lay et al. Linear Algebra and Its Application (FifthEdition) [M]. Pearson,, 2016.
Sheldon Axler. Linear Algebra Done Right (Third Edition) [M].Springer, 2015.
Gerald Farin, and Dianne Hansford. Practical Linear Algebra:A Geometry Toobox (Third Edition) [M]. CRC Press, 2013.
Gilbert Strang. Linear Algebra and Learning from Data [M].Wellesley-Cambridge Press, 2019.
徐仲. 矩阵论简明教程(第3版)[M]. 北京: 科学出版社, 2014.
张贤达. 矩阵分析与应用(第2版)[M]. 北京: 清华大学出版社, 2013.
Gene H. Golub, and Charles F. Van Loan. Matrix Computation(Fourth Edition) [M]. The Johns Hopkins University Press, 2013.
Roger A. Horn, and Charles R. Johnson. Matrix Analysis(Second Edition) [M]. Cambridge University Press, 2013.
盛骤, 谢式千, 潘承毅. 概率论与数理统计(第4版)[M]. 北京: 高等教育出版社, 2008.
陈希孺. 概率论与数理统计[M]. 合肥: 中国科学技术大学出版社, 2017.
Jay L. Devore. Probability and Statistics for Engineering andthe Sciences (Ninth Edition) [M]. Cengage Learning, 2016.
Morris H. DeGroot, and Mark J. Schervish . Probabilityand Statistics (Forth Edition) [M]. Pearson, 2012.
高惠璇. 应用多元统计分析[M]. 北京大学出版社, 2004.
王静龙. 多元统计分析[M]. 科学出版社, 2008.
T. W. Anderson. An Introduction to Multivariate StatisticalAnalysis (Third Edition) [M]. John Wiley & Sons, 2003.
Richard A. Johnson, and Dean W. Wichern . Applied Multivariate Statistical Analysis (SixthEdition) [M]. Pearson, 2007.
程士宏. 测度论与概率论基础[M]. 北京: 北京大学出版社, 2004.
严加安. 测度论讲义(第2版)[M]. 北京: 科学出版社, 2004.
Krishna B. Athreya, and Soumendra N. Lahiri. Measure Theoryand Probability Theory (Third Edition) [M]. Springer, 2006.
Paul R. Halmos. Measure Theory [M]. Springer Science+Business Media, 1974.
胡迪鹤. 高等概率论及其应用[M]. 北京: 高等教育出版社, 2008.
郑忠国. 高等统计学[M]. 北京: 北京大学出版社, 2012.
Craig A. Mertler, and Rachel Vannatta Reinhart. Advanced andMultivariate Statistical Methods: Practical Application and Interpretation(Sixth Edition) [M]. Routledge, 2017.
Eugene Demidenko. Advanced Statistics with Applications in R[M]. John Wiley & Sons, 2020.
何书元. 随机过程[M]. 北京: 北京大学出版社, 2008.
张波, 张景肖. 应用随机过程[M]. 北京: 清华大学出版社, 2004.
Sheldon M. Ross. Introduction to Probability Models (Twelfth Edition)[M]. Academic Press, 2019.
Robert G. Gallager. Stochastic Processes: Theory forApplications [M]. John Wiley & Sons, 2013.
David Forsyth. Probability and Statistics for ComputerScience (Twelfth Edition) [M]. Springer, 2018.
Luc Devroye et al. A Probabilistic Theory of PatternRecognition [M]. Springer, 1997.
《运筹学》教材编写组. 运筹学(第4版)[M]. 北京: 清华大学出版社, 2013.
胡运权, 郭耀煌. 运筹学教程(第5版)[M]. 北京: 清华大学出版社, 2018.
Frederick S. Hillier, and Gerald J. Lieberman. Introductionto Operation Research (Tenth Edition) [M]. McGraw-Hill Education, 2015.
Hamdy A. Taha. Operation Research:An Introduction(Tenth Edition) [M]. Pearson, 2017.
陈宝林. 最优化理论与算法(第2版)[M]. 北京: 清华大学出版社, 2018.
高立. 数值最优化方法[M]. 北京: 北京大学出版社, 2014.
Edwin K. P. Chong, and Stanislaw H. Zak. An Introduction toOptimization (Fourth Edition) [M]. John Wiley & Sons, 2013.
Jorge Nocedal, and Stephen J. Wright. Numerical Optimization(Second Edition) [M]. Springer, 2006.
Stephen Boyd, and Lieven Vandenberghe. Convex Optimization[M]. Cambridge University Press, 2004.
Yuni Nesterov. Lectures on Convex Optimization (SecondEdition) [M]. Springer, 2018.
李航. 统计学习方法(第2版)[M]. 北京: 清华大学出版社, 2019.
周志华. 机器学习[M]. 北京: 清华大学出版社, 2016.
Yuni Nesterov. The Elements of Statistical Learning: DataMining, Inference, and Prediction (Second Edition) [M]. Springer, 2009.
Tom M. Mitchell. Machine Learning [M]. McGraw-Hill Education,1997.
Christopher Bishop. Pattern Recognition and Machine Learning[M]. Springer, 2006.
Mehryar Mohri et al. Foundation of Machine Learning (SecondEdition) [M]. The MIT Press, 2018.
Kevin P. Murphy. Probabilistic Machine Learning: AnIntroduction [M]. The MIT Press, 2022.
Shai Shalev-Shwartz, and Shai Ben-David. UnderstandingMachine Learning: From Theory to Algorithms [M]. Cambridge University Press,2014.
Ian Goodfellow etal. Deep Learning [M]. The MIT Press, 2016.
杨强, 张宇, 戴文渊, 潘嘉林 . 迁移学习[M]. 北京: 机械工业出版社, 2020.
杨强, 刘洋,程勇 等. 联邦学习[M]. 北京: 中国工信出版集团, 电子工业出版社, 2020.
周志华. 集成学习:基础与算法(第2版)[M]. 李楠, 译. 北京: 清华大学出版社, 2019.
Richard S. Sutton, and Andrew G. Barto. ReinforcementLearning: An Introduction [M]. The MIT Press, 2018.
Amparo Albalate, and Wolfgang Minker. Semi-Supervised andUnsupervised Machine Learning [M]. ISTE, and John Wiley & Sons, 2011.
Christoph Molnar. Interpretable Machine Learning: A Guide forMaking Black Box Models Expainable [M]. lulu.com, 2020.
Judea Pearl. Causality: Models, Reasoning, and Inference(Second Edition) [M]. Cambridge University Press, 2009.
注:本文版权归作者个人所有,如需转载请联系作者,未经授权不得转载。