本文聚焦于ACM Transactions on Information Systems(简称TOIS)信息系统顶级期刊,通过图文并茂的方式,梳理了2025年第43卷第2期的研究热点与最新趋势,帮助读者把握信息检索与推荐系统领域的前沿进展,深入了解预训练模型驱动的检索+推荐融合、检索增强生成、联邦学习与隐私保护、用户行为脆弱性与系统公平性等方向的前沿动态。
本文的作者是李杨,审校为朱旺和陆新颖。
一、期刊介绍
TOIS由美国计算机学会(ACM)出版,聚焦信息检索(IR)与推荐系统(RecSys)等信息系统领域的高质量研究成果。TOIS覆盖检索模型与排序、交互式检索、推荐算法、用户行为分析、搜索引擎架构、计算广告、隐私保护与可解释性等多个方向,长期稳居信息系统与计算机科学领域的顶级期刊行列。
期刊官网:https://dl.acm.org/journal/tois
二、热点分析
图1 ACM TOIS 2025年第2期录用论文列表高频词
图1为基于TOIS(2025年第2期)录用论文列表高频关键词生成的词云图,反映了信息检索与推荐系统领域的研究热点、方法与趋势。可以看到,词云中的一些核心词汇,特别是“Recommender systems”(推荐系统)、“Collaborative filtering”(协同过滤)、“Language models”(语言模型)、“Retrieval models and ranking”(检索模型与排序)和“Users and interactive retrieval”(用户与交互式检索),体现出该期刊在推荐算法、协同过滤优化、大规模预训练模型及检索精排与人机交互方面的广泛关注。此外,如“Search-based software engineering”(基于检索的软件工程)、“Natural language generation”(自然语言生成)、“Privacy protections”(隐私保护)、“Computational advertising”(计算广告)以及“Federated learning”(联邦学习)等这些词汇的出现表明,研究者们正积极探索如何将预训练语言模型与检索、推荐深度融合,兼顾数据隐私与系统可解释性,并在软件工程、广告投放与跨域推荐等多场景下提升系统性能与用户体验。接下来将从研究方向与方法两个维度,对这些热点进行深入分析。
2.1 高频研究方向
1.推荐系统(Recommender Systems):贯穿专刊与常规论文,大量工作关注如何利用大规模预训练模型、图神经网络或多专家模型提升推荐效果。
2.信息检索与排序(Retrieval Models & Ranking):从第一阶段检索(Mixture-of-Experts)到检索增强生成(RAG),涵盖多模态与代码检索等应用。
3.用户行为与交互检索(Users & Interactive Retrieval):探索搜索交互中的假信息效应(Decoy Effect)及系统脆弱性量化。
4.问答与自然语言生成(Question Answering & NLG):面向实体问答的知识图谱嵌入和开域问答自增广技术等方向。
5.隐私保护与联邦学习(Privacy & Federated Learning):包括参数无传输联邦序列推荐与可认证“遗忘”机制等研究。
2.2 高频方法
1.大规模预训练模型 & LLM融合:专题特刊聚焦预训练模型在检索与推荐中的应用,综述与实证并重。
2.图神经网络(GNN)与低阶滤波:在学术推荐与流量预测中,对图结构数据进行矩阵补全与对比学习。
3.对比学习(Contrastive Learning)与混合专家(Mixture-of-Experts):提升模型鲁棒性与多样性。
4.检索增强生成(Retrieval-Augmented Generation):从中文基准到事实增强与令牌压缩,推动 RAG 在多语言场景应用。
5.深度强化学习(Deep RL):在求职技能推荐与竞价投放等场景下实现可解释且市场感知的长时序决策。
2.3 研究热点
1.预训练模型驱动的“检索+推荐”融合
专题特刊探讨将BERT/GPT等预训练模型引入候选召回和精排流程。领域自适应微调和多目标优化在长尾与冷启动场景中显著提升了推荐效果。
2.检索增强生成(RAG)技术
研究从中文CRUD-RAG基准到FIT-RAG的事实增强与令牌压缩策略不断优化召回-生成一体化流程。动态检索与图神经网络辅助召回显著降低了生成阶段的计算开销。
3.可认证“遗忘”与压缩式联邦推荐
在联邦学习框架下,通过参数无传输更新和差分隐私实现对过时用户偏好的安全擦除。Guided Filtering去噪技术在保证隐私合规的同时,不损害推荐性能。
4.用户行为脆弱性与公平性研究
“诱饵效应”揭示了特定条目排列对用户点击和决策的潜在操控风险。可解释排序和博弈论机制正被引入,以增强系统的鲁棒性与算法公平性。
5.大语言模型在问答、代码检索与行为模拟中的扩展应用
将知识图谱嵌入与LLM自增广结合,可提升开放域问答的覆盖率与准确性。LLM驱动的多代理用户模拟环境,为检索系统评估与交互设计提供了新的测试平台。
三、最新趋势
1.多模态融合与意图感知
通过图像、文本、代码等多渠道信息联合建模,结合意图不确定性感知和图神经网络,实现对用户上下文和检索内容的深度理解。自适应对比学习与低通滤波技术在稀疏图与长尾场景中进一步提升了推荐与检索的鲁棒性。
2.自适应对比学习与图结构增强
研究将低通滤波与对比学习目标结合,提升稀疏图和长尾节点的表征质量。图增强技术(如边/节点扰动)则有效增强模型对复杂拓扑结构的适应性,实现更稳定的检索和推荐效果。
3.轻量化部署与闭环模拟
令牌压缩、黑盒事实增强和动态检索策略大幅降低生成式检索的计算开销,支持边缘与移动端的实时应用。基于LLM的多代理用户模拟构建了可控沙箱,为交互设计、安全评估和系统优化提供了闭环验证。
四、总结
TOIS 2025年3月(第43卷第2期)体现了信息检索与推荐系统领域从预训练模型到可解释隐私保护、从检索增强生成到用户行为安全的全方位创新。通过深度学习、图神经、对比学习与强化学习等技术融合,研究者正不断推动更加高效、可信和多模态的信息系统发展。希望本文能为您的科研选题与研究规划提供有价值的参考。