python2 collections模块

目录

简介

1. namedtuple(typename, field_names[, verbose=False][, rename=False])

2. deque([iterable[, maxlen]])

3. Counter([iterable-or-mapping])

4. OrderedDict

5. defaultdict([default_factory[, ...]])


简介

collections 是 python 的内置模块,提供了对dict , list , set , 和 tuple 容器类的功能扩展或替代。合理使用此模块,有助于提高代码的性能和可读性。

  • namedtuple():创建命名元组子类的工厂函数
  • deque:创建一个可在两头操作的队列,类似列表(list)的容器,实现了在两端快速添加(append)和弹出(pop)
  • Counter:字典的子类,提供了可哈希对象的计数功能
  • OrderedDict:字典的子类,保存了他们被添加的顺序。普通的dict类,添加的数据会根据key值自动排序。如果使用print或遍历等方法,列印出来的顺序与添加的顺序不一定相同。
  • defaultdict:字典的子类,提供了一个工厂函数,为字典查询提供一个默认值

8.3. collections — High-performance container datatypes — Python 2.7.18 文档https://docs.python.org/zh-cn/2.7/library/collections.html#collections.defaultdict


1. namedtuple(typenamefield_names[, verbose=False][, rename=False])

它会返回一个新的元组的子类,即其作用是创建一个tuple的子类,不过tuple中的各个元素添加了个名字。本质还是个tuple。

所以其返回值是个类。所以要想使用,就还需要用这个子类初始化才能得到数据对象。以下这些help中的案例,对其使用演示的比较清晰。

>>> Point = namedtuple('Point', ['x', 'y'])
>>> Point.__doc__        # docstring for the new class
'Point(x, y)'
>>> p = Point(11, y=22)  # instantiate with positional args or keywords
>>> p[0] + p[1]          # indexable like a plain tuple
33
>>> x, y = p             # unpack like a regular tuple
>>> x, y
(11, 22)
>>> p.x + p.y            # fields also accessable by name
33
>>> d = p._asdict()      # convert to a dictionary
>>> d['x']
11
>>> Point(**d)           # convert from a dictionary
Point(x=11, y=22)
>>> p._replace(x=100)    # _replace() is like str.replace() but targets named fields
Point(x=100, y=22)

命名元组尤其有用于赋值 csv sqlite3 模块返回的元组

EmployeeRecord = namedtuple('EmployeeRecord', 'name, age, title, department, paygrade')

import csv
for emp in map(EmployeeRecord._make, csv.reader(open("employees.csv", "rb"))):
    print emp.name, emp.title

import sqlite3
conn = sqlite3.connect('/companydata')
cursor = conn.cursor()
cursor.execute('SELECT name, age, title, department, paygrade FROM employees')
for emp in map(EmployeeRecord._make, cursor.fetchall()):
    print emp.name, emp.title

_make()和_asdict()是namedtuple所创建子类的两个好方法:

_make()可直接从tuple或者list数据生成子类对象。

_asdict()可将子类对象直接转化为字典数据。

>>> User = namedtuple("User",["name", "age", "weight"])
>>>
>>> userdata = ["root",18,50]
>>> user_root = User._make(userdata)
>>> user_root
User(name='root', age=18, weight=50)
>>> user_root._asdict()
OrderedDict([('name', 'root'), ('age', 18), ('weight', 50)])
>>>
>>> userdata = ["admin",20,70]
>>> user_admin = User._make(userdata)
>>> user_admin
User(name='admin', age=20, weight=70)
>>> user_admin._asdict()
OrderedDict([('name', 'admin'), ('age', 20), ('weight', 70)])

2. deque([iterable[, maxlen]])

返回一个新的双向队列对象,从左到右初始化(用方法 append()) ,从 iterable (迭代对象) 数据创建。如果 iterable 没有指定,新队列为空。

Deque队列是由栈或者queue队列生成的(发音是 “deck”,”double-ended queue”的简称)。

Deque 支持线程安全,内存高效添加(append)和弹出(pop),从两端都可以。

虽然 list 对象也支持类似操作,不过这里优化了定长操作和 pop(0) 和 insert(0, v) 的开销。

如果 maxlen 没有指定或者是 None ,deques 可以增长到任意长度。否则,deque就限定到指定最大长度。一旦限定长度的deque满了,当新项加入时,同样数量的项就从另一端弹出。限定长度deque提供类似Unix filter tail 的功能。它们同样可以用与追踪最近的交换和其他数据池活动。

双向队列deque的对象的常用方法:

属性maxlenDeque的最大尺寸,如果没有限定的话就是 None 。
append(x)添加 x 到 队列的右端。
appendleft(x)添加 x 到 队列的左端

clear()

移除所有元素,使其长度为0.

count(x)计算queue中元素等于x的个数。
extend(iterable)扩展deque的右侧,通过添加iterable参数中的元素。
extendleft(iterable)

扩展deque的左侧,通过添加iterable参数中的元素。

注意,左添加时,在结果中iterable参数中的顺序将被反过来添加。

pop()移去并且返回一个元素,deque 最右侧的那一个。 如果没有元素的话,就引发一个 IndexError
popleft()移去并且返回一个元素,deque 最左侧的那一个。 如果没有元素的话,就引发 IndexError
remove(value)移除找到的第一个 value。 如果没有的话就引发 ValueError
reverse()将deque逆序排列。返回 None 。
rotate(n=1)

向右循环移动 n 步。 如果 n 是负数,就向左循环。

如果deque不是空的,向右循环移动一步就等价于 d.appendleft(d.pop()) ,向左循环一步就等价于 d.append(d.popleft()) 。

deque示例:

>>> from collections import deque
>>> d = deque('ghi')                 # make a new deque with three items
>>> for elem in d:                   # iterate over the deque's elements
...     print elem.upper()
G
H
I

>>> d.append('j')                    # add a new entry to the right side
>>> d.appendleft('f')                # add a new entry to the left side
>>> d                                # show the representation of the deque
deque(['f', 'g', 'h', 'i', 'j'])

>>> d.pop()                          # return and remove the rightmost item
'j'
>>> d.popleft()                      # return and remove the leftmost item
'f'
>>> list(d)                          # list the contents of the deque
['g', 'h', 'i']
>>> d[0]                             # peek at leftmost item
'g'
>>> d[-1]                            # peek at rightmost item
'i'

>>> list(reversed(d))                # list the contents of a deque in reverse
['i', 'h', 'g']
>>> 'h' in d                         # search the deque
True
>>> d.extend('jkl')                  # add multiple elements at once
>>> d
deque(['g', 'h', 'i', 'j', 'k', 'l'])
>>> d.rotate(1)                      # right rotation
>>> d
deque(['l', 'g', 'h', 'i', 'j', 'k'])
>>> d.rotate(-1)                     # left rotation
>>> d
deque(['g', 'h', 'i', 'j', 'k', 'l'])

>>> deque(reversed(d))               # make a new deque in reverse order
deque(['l', 'k', 'j', 'i', 'h', 'g'])
>>> d.clear()                        # empty the deque
>>> d.pop()                          # cannot pop from an empty deque
Traceback (most recent call last):
  File "<pyshell#6>", line 1, in -toplevel-
    d.pop()
IndexError: pop from an empty deque

>>> d.extendleft('abc')              # extendleft() reverses the input order
>>> d
deque(['c', 'b', 'a'])

3. Counter([iterable-or-mapping])

它是dict的subclass,用于统计计数。结果的元素,按照字典的key/value成对排序的。

或者说,对于可迭代对象比如string, list或dict等,Counter()可统计每个元素出现的次数。

>>> # Tally occurrences of words in a list
>>> from collections import *
>>>
>>> colors = ['red', 'blue', 'red', 'green', 'blue', 'blue']
>>> Counter(colors)
Counter({'blue': 3, 'red': 2, 'green': 1})

>>> # Find the ten most common words in Hamlet
>>> import re
>>> words = re.findall(r'\w+', open('hamlet.txt').read().lower())
>>> Counter(words).most_common(10)
[('the', 1143), ('and', 966), ('to', 762), ('of', 669), ('i', 631),
 ('you', 554),  ('a', 546), ('my', 514), ('hamlet', 471), ('in', 451)]

>>> Counter('gallahad') 
Counter({'a': 3, 'l': 2, 'h': 1, 'g': 1, 'd': 1})

# elements(), 返回一个迭代器,每个元素重复计数的个数。元素顺序是任意的。
>>> c = Counter(a=4, b=2, c=0, d=-2, e=1)
>>> del c['e']
>>> list(c.elements())
['a', 'a', 'a', 'a', 'b', 'b']

# most_common([n]), Return a list of the n most common elements
>>> Counter('abracadabra').most_common(3)
[('a', 5), ('r', 2), ('b', 2)]

# subtract([iterable-or-mapping]), 从 迭代对象 或 映射对象 减去元素。
>>> c = Counter(a=4, b=2, c=0, d=-2)
>>> d = Counter(a=1, b=2, c=3, d=4)
>>> c.subtract(d)
>>> c
Counter({'a': 3, 'b': 0, 'c': -3, 'd': -6})

# Counter 对象的常用案例
>>> sum(c.values())                 # total of all counts
>>> c.clear()                       # reset all counts
>>> list(c)                         # list unique elements
>>> set(c)                          # convert to a set
>>> dict(c)                         # convert to a regular dictionary
>>> c.items()                       # convert to a list of (elem, cnt) pairs
>>> Counter(dict(list_of_pairs))    # convert from a list of (elem, cnt) pairs
>>> c.most_common()[:-n-1:-1]       # n least common elements
>>> c += Counter()                  # remove zero and negative counts

# 提供了几个数学操作
>>> c = Counter(a=3, b=1)
>>> d = Counter(a=1, b=2)
>>> c + d                       # add two counters together:  c[x] + d[x]
Counter({'a': 4, 'b': 3})
>>> c - d                       # subtract (keeping only positive counts)
Counter({'a': 2})
>>> c & d                       # intersection:  min(c[x], d[x])
Counter({'a': 1, 'b': 1})
>>> c | d                       # union:  max(c[x], d[x])
Counter({'a': 3, 'b': 2})

4. OrderedDict

OrderedDict 是字典的子类,但与普通的dict不同的是,它会记录并保持元素的插入顺序。它可以与排序结合使用来创建一个已排序的字典。其属性及方法,在py2上,与dict没有什么差异。

>>> from collections import OrderedDict

# regular unsorted dictionary
>>> d = {'banana': 3, 'apple': 4, 'pear': 1, 'orange': 2}

# dictionary sorted by key
>>> OrderedDict(sorted(d.items(), key=lambda t: t[0]))
OrderedDict([('apple', 4), ('banana', 3), ('orange', 2), ('pear', 1)])

# dictionary sorted by value
>>> OrderedDict(sorted(d.items(), key=lambda t: t[1]))
OrderedDict([('pear', 1), ('orange', 2), ('banana', 3), ('apple', 4)])

# dictionary sorted by length of the key string
>>> OrderedDict(sorted(d.items(), key=lambda t: len(t[0])))
OrderedDict([('pear', 1), ('apple', 4), ('orange', 2), ('banana', 3)])

# usually usage
>>> d = OrderedDict()
>>> d['name']='root'
>>> d['age']=5
>>> d['grade']=2
>>> d['class']=10

5. defaultdict([default_factory[, ...]])

返回一个新的类似字典的对象。它实现了当 key 不存在时返回默认值的功能。 defaultdict 是内置 dict 类的子类。它重载了一个方法并添加了一个可写的实例变量。其余的功能与 dict 类相同。

参数default_factory必须是可操作的,比如 python 内置类型,或者无参的可调用的函数。

>>> from collections import *

# 以list作为default_factory
# it is easy to group a sequence of key-value pairs into a dictionary of lists
>>> s = [('yellow', 1), ('blue', 2), ('yellow', 3), ('blue', 4), ('red', 1)]
>>> d = defaultdict(list)
>>> for k, v in s:
...     d[k].append(v)
...
>>> d.items()
[('blue', [2, 4]), ('red', [1]), ('yellow', [1, 3])]

# or to a new dict object
>>> d = {}
>>> for k, v in s:
...     d.setdefault(k, []).append(v)
...
>>> d.items()
[('blue', [2, 4]), ('red', [1]), ('yellow', [1, 3])]

# Setting the default_factory to int makes the defaultdict useful for counting
>>> s = 'mississippi'
>>> d = defaultdict(int)
>>> for k in s:
...     d[k] += 1
...
>>> d.items()
[('i', 4), ('p', 2), ('s', 4), ('m', 1)]

# Setting the default_factory to set makes the defaultdict useful for building a dictionary of sets:
>>> s = [('red', 1), ('blue', 2), ('red', 3), ('blue', 4), ('red', 1), ('blue', 4)]
>>> d = defaultdict(set)
>>> for k, v in s:
...     d[k].add(v)
...
>>> d.items()
[('blue', set([2, 4])), ('red', set([1, 3]))]

# 无参函数作为default_factory
>>> def StudentInfo():
...   return {
...     "name":"root",
...     "age":10
...   }
... 
>>> dd = defaultdict(StudentInfo)
>>> s = dd['student'] # 此处等同于运行 s = StudentInfo()
>>> print s
{'age': 10, 'name': 'root'}
>>> s['age']=20
>>> print s
{'age': 20, 'name': 'root'}
### 回答1: collections模块Python标准库中的一个模块,提供了许多有用的数据类型。其中包括: - deque: 双端队列 - Counter: 计数器 - OrderedDict: 有序字典 - defaultdict: 默认字典 - namedtuple: 命名元组 - ChainMap: 链接多个字典 使用这些类型可以更方便地进行数据操作和处理。 ### 回答2: collectionsPython标准库中的一个模块,提供了许多有用的容器数据类型。这些数据类型是基于内置的数据类型(如字典,列表和集合等)的实现,以提供更多的功能和灵活性。 collections模块中最常用的数据类型是:Counter、defaultdict、OrderedDict和namedtuple。 Counter是一个字典的子类,用于计算可哈希对象的出现次数。它可以接受任何可哈希对象的序列作为输入,并返回一个字典,其中包含每个对象作为键和其出现次数作为值。 defaultdict是一个字典的子类,它可以接受一个工厂函数作为参数。当访问不存在的键时,默认会返回该工厂函数的返回值,而不是抛出KeyError异常。这对于处理缺失键的情况非常有用。 OrderedDict是一个有序的字典,它以插入顺序来维护元素的顺序。与普通的字典不同,OrderedDict可以记住元素的添加顺序,从而实现按照插入顺序进行遍历。 namedtuple是一个工厂函数,用于创建具有命名字段的元组子类。它允许我们为元组中的每个字段指定一个名称,从而增加了元组的可读性和代码的可维护性。 除了上述常用的数据类型外,collections模块还提供了其他一些有用的类,如deque(双端队列)、ChainMap(合并多个字典)、UserDict(方便地创建字典的一种方式)等。 总而言之,collections模块扩展了Python内置的容器数据类型,提供了更多方便、灵活和高效的数据结构,使我们在处理数据时更加方便和高效。它是每个Python程序员都应该熟悉和掌握的重要模块之一。 ### 回答3: collections模块Python标准库中的一个模块,提供了一些常用的数据类型和工具,用于扩展内置的数据类型,提供方便的数据结构和算法。 collections模块中最常用的数据类型是容器类型,包括:Counter、defaultdict、deque、OrderedDict和namedtuple。 1. Counter:用于计数元素出现的次数,并以字典的形式返回计数结果。它可以用于快速计数列表、字符串或任何可迭代对象中的元素。 2. defaultdict:是内置字典类(dict)的一个子类,它通过传入一个默认值工厂函数,当键不存在时返回该默认值。这对于需要设置默认值的字典非常有用。 3. deque:双端队列,可以快速在两端进行插入和删除操作,比内置的list类型更高效。 4. OrderedDict:有序字典,它会根据元素的插入顺序保持顺序,与普通字典不同,遍历时返回的键值对按照插入顺序排列。 5. namedtuple:命名元组,是一个生成类的工厂函数,用于创建具有字段名称的元组。它可以通过字段名称访问元组的元素,提高了程序的可读性。 除了这些常用的数据类型,collections模块还提供了一些其他的工具函数,用于处理迭代器、排序和计数等操作。 总之,collections模块Python开发者提供了一些有用的数据类型和工具,可以简化常见的数据操作,提高开发效率。无论是在处理复杂数据结构还是简单计数,使用collections模块可以更方便地进行操作和处理。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

auspark

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值