图神经网络算法学习笔记
文章平均质量分 58
CGCNN算法
Austin6035
这个作者很懒,什么都没留下…
展开
-
9. 图的表示及PyG实现
1. 图的表示图是由若干点及连接点的线组成,通常用于描述对象之间的特定关系。用点来表示不同的对象,点与点之间的连线称为边,表示对象之间的关系。图结构在表示社会关系、交通网络等问题中更具优势。图(Graph)的表示其中存在N个点(Vertex)和M个边(Edge),即图可以使用邻接矩阵来表示,例如下图左由5个点和8条边构成的图数据,图右为其对应邻接矩阵。(0表示不连接,1表示连接)2. PyTorch Geometric的图表示torch_geometric.data —.原创 2022-05-06 10:52:49 · 671 阅读 · 0 评论 -
9. 卷积神经网络的简单理解及实现
一、理论知识如果第 层有 个神经元,第层有个神经元,那么权重矩阵有个参数。当和 都很大时,权重矩阵的参数非常多,训练效率会非常低。1. 卷积层卷积层的作用是提取一个局部区域的特征,不同的卷积核相当于不同的特征提取器。假设输入数据为M×M二维矩阵,经过N×N的卷积核变换后,得到(M-N+1)×(M-N+1)的特征矩阵。下图表示的是对二维矩阵样本数据进行卷积操作的演示2. 池化层池化层的作用是进行特征选择,降低特征数量,从而减少参数数量。常用的池...原创 2022-05-05 21:27:12 · 1023 阅读 · 0 评论 -
8. 基于Sequential完成神经网络搭建
1. 简单全连接神经网络的搭建class NeuralNet(nn.Module): def __init__(self, in_features, hidden_features, out_features): super(NeuralNet, self).__init__() self.layer1 = nn.Linear(in_features, hidden_features) self.layer2 = nn.Linear(hidden原创 2022-05-03 21:21:11 · 1008 阅读 · 0 评论 -
7. 神经网络训练MNIST数据集的简单实现
1. 实现全连接神经网络搭建(第3节内容)2. 完成数据集下载(第6节内容)3. 完成数据集加载(第6节内容)原创 2022-05-03 21:00:52 · 1552 阅读 · 0 评论 -
6. 手写数字图片数据集MNIST
MNIST数据集(http://yann.lecun.com/exdb/mnist/)手写数字图片数据集,存在60000个训练样本,10000个测试样本。每个样本为一个28X28像素的图片。主要包含四个压缩文件: train-images-idx3-ubyte.gz 训练样本图片的原始数据 train-labels-idx1-ubyte.gz 训练样本图片对应的标签数据 t10k-images-idx3-ubyte.gz 测试样本图片的原始数据 t10原创 2022-05-03 10:08:12 · 4007 阅读 · 0 评论 -
5. 神经网络中的数理基础
1. 数据通常用一个维向量来表示一个数据的所有特征向量,而数据标签通常用标量来表示。2. 数据集假设数据集存在个样本,记为数据集一般分为训练集和测试集。训练集中的样本用于模型训练,而测试集是用于检验模型好坏。3. 机器学习的关键在给定数据集上,我们希望计算机从一个函数集合中自动寻找一个“最优”的函数来近似每个样本的特征向量 和标签之间的真实映射。如何寻找这个“最优”的函数就是机器学习的关键。4. 机器学习的模型4.1 线性模型...原创 2022-05-01 13:04:28 · 1252 阅读 · 0 评论 -
4. PyTorch中的数据类型—张量
本文中所有代码的前提是调用PyTorch包import torch1. 张量的理解标量:0维张量,向量:1维张量,矩阵:2维张量。简单理解,张量是3维及以上的高维矩阵。2. PyTorch的张量创建2.1 列表类型转变为张量类型t = torch.tensor([1,2,3,4])2.2 PyTorch包内置方法创建torch.rand(l,m,n) # [l,m,n]维的向量,内部元素在[0,1]区间分布;torch.randn(l,m,n) # [l,m,n]维原创 2022-04-29 18:28:04 · 998 阅读 · 0 评论 -
3. 简单前馈神经网络模型及PyTorch实现
一、理论知识1. 神经元(神经细胞)如图1所示,人脑中携带和传输信息的细胞,是人脑神经系统中的最基本单元。每个神经元上有成千上万的突触和其他神经元连接。图1. 神经元的结构 [https://commons.wikimedia.org/wiki/File:Neuron_Hand-tuned.svg]树突:可以接收刺激并将兴奋传入细胞体,每个神经元可以有一或多个树突;细胞体:神经细胞膜与相应的化学物质神经递质结合,产生相应的生理活动:兴奋或抑制;轴突:把自身的兴奋状态传递到另一个神原创 2022-04-27 21:07:33 · 2434 阅读 · 0 评论 -
2. Python模块安装
1. 进入Anaconda虚拟环境;2. PyTorch包安装(https://pytorch.org/get-started/locally/)选择你的安装版本(Stable 1.11.0),操作系统(Windows),安装工具包(Conda),脚本语言(Python),计算平台(CPU)(如使用GPU,请选择CUDA版本)后,在虚拟环境中执行Run this command中内容进行PyTorch包的安装conda install pytorch torchvision torchaudi原创 2022-04-26 21:14:22 · 797 阅读 · 0 评论 -
1. 虚拟环境的配置
第一步:安装Anaconda(Anaconda | The World's Most Popular Data Science Platform)软件第二步:在开始菜单中找到Anaconda,打开Anaconda Prompt第三步:基于conda指令创建虚拟环境conda create -n your_env_name第四步:使用虚拟环境1. 激活虚拟环境conda activate your_env_name2. 退出虚拟环境conda deactivate3.原创 2022-04-26 11:36:55 · 145 阅读 · 0 评论