8. 基于Sequential完成神经网络搭建

本文介绍了如何利用PyTorch中的Sequential容器来简洁地搭建全连接神经网络,详细阐述了Sequential参数顺序与模型构建的关系。
摘要由CSDN通过智能技术生成

1. 简单全连接神经网络的搭建

class NeuralNet(nn.Module):
    def __init__(self, in_features, hidden_features, out_features):
        super(NeuralNet, self).__init__()
        self.layer1 = nn.Linear(in_features, hidden_features)
        self.layer2 = nn.Linear(hidden_features, out_features)
 
    def forward(self, x):
        y = self.layer1(x)
        y = nn.functional.relu(y)
        y = self.layer2(y)
        return y

2. 基于时序容器Sequential类来创建神经网络

Sequential — PyTorch 1.11.0 documentation

class NeuralNet(nn.Module):
    def __init__(self, in_features, hidden_features, out_features):
        super(NeuralNet, self).__init__()
        self.layer = nn.Sequential(nn.Linear(in_features, hidden_features),
                                   nn.ReLU(),
                                   nn.Linear(hidden_features, out_features))
    def forward(self,x):
        y = self.layer(x)
        return y

Sequential参数的先后顺序对应模型参数传递的先后顺序

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值