利用PyTorch Autograd自动求导训练线性回归模型

利用PyTorch Autograd自动求导训练线性回归模型

About-说明

第一篇文章中pytorch基础入门 训练原始的线性模型,我们用手动计算微分的方式,
实现了基于Python语言的线性回归模型训练;这虽然非常适合理解相关概念,但是实现方式是非常原始的.

在查看PyTorch相关文档时,很容易就发现它把 Autograd(自动求导) 作为一个突出的优势,所以这篇文章旨在了解 Autograd的概念上,实现上一篇文章的线性回归模型.
归纳而言,这篇会相对简单,主要包含以下几点:

  • PyTorch Autograd 概念介绍
  • 利用 Autograd 替代手动求解导数
  • 实现 Autograd 方式的线性回归模型

PyTorch Autograd 概念介绍

简单介绍就是:
PyTorch中设置 requires_grad 为True, PyTorch就会为你记录表达式转换过程的求导链,
当你执行backward()时,原始参数的grad就包含了对应参数的导数;
对应的官网入门讲解地址

原理虽然简单,但其中有不少细节需要注意:

  • 首先需要这个函数链是可导的
  • 一个 backward 对应一个 grad计算值,所以重复 backward 以及中间环节执行 backward 都会导致 grad 值变化
  • 一个 grad 使用完之后,需要记得 设置为 0 ,再次 backward 才能得到正确的值

利用 Autograd 替代手动求解导数

# 设置 requires_grad=True ,告诉PyTorch需要记录params上所有的操作
params = torch.tensor([1.0, 0.0], requires_grad=True)

# 目前为止 params.grad is None

# 执行 backward 后, params.grad 就保存了微分值
loss = loss_fn(model(t_u, *params), t_c)
loss.backward()

# grad 使用完之后,需要记得 设置为 0
if params.grad is not None:
  params.grad.zero_()

实现 Autograd 方式的线性回归模型

替代之前loop循环

def training_loop(n_epochs, learning_rate, params, t_u, t_c):
  for epoch in range(1, n_epochs + 1):
    if params.grad is not None:
       params.grad.zero_()
    t_p = model(t_u, *params)
    loss = loss_fn(t_p, t_c)
    loss.backward()
    params = (params - learning_rate * params.grad).detach().requires_grad_()
    # print('Epoch %d, Loss %f' % (epoch, float(loss)))
    # print('Params', params)
    if epoch % 500 == 0:
      print('Epoch %d, Loss %f' % (epoch, float(loss)))
  return params

需要着重解释的是 detach().requires_grad_()
这里的作用就是使 params 脱离之前的函数链,PyTorch重新记录新的函数链

完整的代码如下:

"""
PyTorch 基础入门二: PyTorch 自动求导线性模型实现
线性回归参数估计
问题: 华氏温度转换
"""
import torch

# 定义输入数据
t_c = [0.5,  14.0, 15.0, 28.0, 11.0,  8.0,  3.0, -4.0,  6.0, 13.0, 21.0]
t_u = [35.7, 55.9, 58.2, 81.9, 56.3, 48.9, 33.9, 21.8, 48.4, 60.4, 68.4]

t_c = torch.tensor(t_c)
t_u = torch.tensor(t_u)

# 对应的线性模型为
# t_c = w * t_u + b

def model(t_u, w, b):
    return w*t_u + b

# 定义损失函数
# t_p 为模型估计值
# t_c 为实验数据
def loss_fn(t_p, t_c):
    squared_diffs = (t_p - t_c)**2
    return squared_diffs.mean()
# 以上跟第一篇保持一致
#########################################################################

# 设置 requires_grad=True ,告诉PyTorch需要记录params上所有的操作
params = torch.tensor([1.0, 0.0], requires_grad=True)

# 目前为止 params.grad is None

# 执行 backward 后, params.grad 就保存了微分值
# loss = loss_fn(model(t_u, *params), t_c)
# loss.backward()

if params.grad is not None:
  params.grad.zero_()

def training_loop(n_epochs, learning_rate, params, t_u, t_c):
  for epoch in range(1, n_epochs + 1):
    if params.grad is not None:
       params.grad.zero_()
    t_p = model(t_u, *params)
    loss = loss_fn(t_p, t_c)
    loss.backward()
    # 
    params = (params - learning_rate * params.grad).detach().requires_grad_()
    # print('Epoch %d, Loss %f' % (epoch, float(loss)))
    # print('Params', params)
    if epoch % 500 == 0:
      print('Epoch %d, Loss %f' % (epoch, float(loss)))
  return params

# 特征缩放处理
t_un = 0.1 * t_u
params = training_loop(
    n_epochs = 5000,
    learning_rate = 1e-2,
    params = torch.tensor([1.0, 0.0], requires_grad=True),
    t_u = t_un,
    t_c = t_c)

# 画出图示
import matplotlib.pyplot as plt
t_p = model(t_un, *params)

fig = plt.figure()
plt.title(u"PyTorch linear model")
plt.xlabel("Fahrenheit")
plt.ylabel("Celsius")
plt.plot(t_u.numpy(), t_p.detach().numpy())
plt.plot(t_u.numpy(), t_c.numpy(), 'o')
plt.show()

结果展示

结果其实同第一篇文章一致:
20200511143712

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值