[算法]PRML学习笔记1.2.6贝叶斯曲线拟合(Bayesian curve fitting)

参考文献:Pattern Recognition and Machine Learning
Published by Springer | January 2006
https://www.microsoft.com/en-us/research/publication/pattern-recognition-machine-learning/

简介

尽管包括了先验分布 p ( w ∣ α ) p(w|\alpha) p(wα),但到目前为止仍在对 w w w进行点估计,因此这还不等于贝叶斯的处理方式。 在完整贝叶斯的方法中,应始终如一地应用概率的和(sum)和乘积(product)规则,这将要求,正如将很快看到的那样,需要对 w w w的所有值进行积分(integrate)。 这种边缘化(marginalizations)是贝叶斯模式识别方法的核心。

从贝叶斯中推断参数

在曲线拟合问题中,获得了训练数据 x x x t t t以及新的测试点 x x x,目标是预测 t t t的值。 因此,希望评估预测分布 p ( t ∣ x , X , t ) p(t | x, X, t) ptx,X,t)。 在这里,假设参数 α \alpha α β \beta β固定 (fixed) 的并且事先已知(在后面的章节中,将讨论如何从贝叶斯设置 Bayesian setting 中的数据中推断出这些参数)。

贝叶斯的处理是简单地对应于概率之和和乘积规则的一致应用,这允许将预测分布写为以下形式 :(1.68) p ( t ∣ x , X , t ) = ∫ p ( t ∣ x , w ) p ( w ∣ X , t ) d w p(t | x, X, t) = \displaystyle \int{p(t | x, w)p(w| X, t)d_w} ptx,X,t)=ptx,w)p(wX,t)dw

这里的 p ( t ∣ x , w ) p(t | x, w) ptx,w)由(1.60)给出,为了简化符号,省略了对 α \alpha α β \beta β的依赖。 这里的 p ( w ∣ X , t ) p(w | X, t) pwX,t)是参数的后验分布,可以通过对(1.66)的右侧进行归一化 (normalizing)得到。 将在第3.3节中看到,对于诸如曲线拟合示例之类的问题,这里的后验分布是高斯分布,可以进行分析评估。 同样,(1.68)中的积分也可以解析地执行,其结果是,预测分布由以下形式的高斯给出: (1.69) p ( t ∣ x , X , t ) = N ( t ∣ m ( x ) , s 2 ( x ) ) p(t|x,X,t)=N(t|m(x),s^2(x)) p(tx,X,t)=N(tm(x),s2(x))
在这里插入图片描述
在这里插入图片描述

这里方差和平均值分别由下面两个式子给出:
(1.70): m ( x ) = β ϕ ( x ) T S ∑ n = 1 N ϕ ( x n ) t n m(x) =\beta \phi(x)^TS\displaystyle \sum^{N}_{n=1}{\phi(x_n)t_n} m(x)=βϕ(x)TSn=1Nϕ(xn)tn
(1.71) s ( x ) = β − 1 + ϕ ( x ) T S ϕ ( x ) s(x) = \beta^{-1} +\phi(x)^T S\phi(x) s(x)=β1+ϕ(x)TSϕ(x)

这里的矩阵(matrix)S由下式(1.72)给出: S − 1 = α I + β ∑ n = 1 N ϕ ( x n ) ϕ ( x ) T S^{-1} = \alpha I +\beta\displaystyle \sum^{N}_{n=1}{\phi(x_n)\phi(x)^T} S1=αI+βn=1Nϕ(xn)ϕ(x)T

其中 I I I是单位矩阵,对于 i = 0,…,M,我们用元素$\phi_i(x) = x^i 定 义 了 矢 量 定义了矢量 \phi(x)$

这里可以看到(1.69)中的预测分布的方差和均值取决于 x x x。 (1.71)中的第一项表示由于目标变量上的噪声引起的 t t t预测值的不确定性,并且已经通过最大似然预测分布(1.64)通过 β M L − 1 \beta_{ML}^{-1} βML1表示。 但是,第二项来自参数 w w w的不确定性,是贝叶斯处理的结果。 合成正弦回归问题(synthetic sinusoidal regression problem )的预测分布如图1.17所示。
在这里插入图片描述
在这里插入图片描述

图1.17: 由使用M = 9多项式的多项式曲线拟合进行贝叶斯处理产生的预测分布,固定参数为 α = 5 × 1 0 − 3 \alpha= 5×10^{-3} α=5×103 β = 11.1 \beta= 11.1 β=11.1(对应于已知噪声方差),其中红色曲线为表示预测分布的平均值,红色区域对应于平均值附近的±1标准偏差

总结

  1. 完整贝叶斯的方法 -> 应用概率的和(sum)和乘积(product)规则 -> 核心:边缘化(marginalizations)
  2. p ( t ∣ x , X , t ) p(t | x, X, t) ptx,X,t) -> 参数 α \alpha α β \beta β是 固定 (fixed) 的并且事先已知 -> 进行归一化 (normalizing) -> 后验:高斯分布 -> 方差和平均值式子 ---- 矩阵(matrix)S & I I I单位矩阵
  3. 目标变量上的噪声 -> t t t预测值的不确定性 -> 通过 β M L − 1 \beta_{ML}^{-1} βML1表示
  4. 参数 w w w的不确定性 -> 贝叶斯处理 -> 正弦回归问题(synthetic sinusoidal regression problem )
  5. 多项式曲线拟合 -> 进行贝叶斯处理 -> 预测分布 -> 预测分布的平均值 & 平均值附近的±1标准偏差
  • 2
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值