转载自——》https://www.cnblogs.com/ninedream/p/11203704.html
最小生成树:
一个有 n 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 n 个结点,并且有保持图连通的最少的边。简单来说就是有且仅有n个点n-1条边的连通图。
而最小生成树就是最小权重生成树的简称,即所有边的权值之和最小的生成树。
最小生成树问题一般有以下两种求解方式。
一、Prim算法
参考了Feynman的博客
Prim算法通常以邻接矩阵作为储存结构。
算法思路:以顶点为主导地位,从起始顶点出发,通过选择当前可用的最小权值边把顶点加入到生成树当中来:
1.从连通网络N={V,E}中的某一顶点U0出发,选择与它关联的具有最小权值的边(U0,V),将其顶点加入到生成树的顶点集合U中。
2.以后每一步从一个顶点在U中,而另一个顶点不在U中的各条边中选择权值最小的边(U,V),把它的顶点加入到集合U中。如此继续下去,直到网络中的所有顶点都加入到生成树顶点集合U中为止。
模板题链接:Prim算法求最小生成树
朴素版时间复杂度O(n²)算法模板:
#include <iostream>
#include <cstdio>
#include <algo