图论——最小生成树:Prim算法及优化、Kruskal算法,及时间复杂度比较

本文介绍了最小生成树的概念及其重要性,详细讲解了Prim算法和Kruskal算法的原理、实现步骤以及时间复杂度。Prim算法以顶点为中心,从一个顶点出发逐步构建最小生成树,而Kruskal算法则以边为中心,按边的权值排序后逐步添加不形成环的边。Prim算法适用于稠密图,Kruskal算法适用于稀疏图,堆优化后的Prim算法(Prim_heap)具有较好的时间复杂度但空间消耗大。在实际应用中,可根据图的特性和需求选择合适的算法。
摘要由CSDN通过智能技术生成

转载自——》https://www.cnblogs.com/ninedream/p/11203704.html

 

最小生成树:

  一个有 n 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 n 个结点,并且有保持图连通的最少的边。简单来说就是有且仅有n个点n-1条边的连通图。

  而最小生成树就是最小权重生成树的简称,即所有边的权值之和最小的生成树。

  最小生成树问题一般有以下两种求解方式。

一、Prim算法

  参考了Feynman的博客 

  Prim算法通常以邻接矩阵作为储存结构。

  算法思路:以顶点为主导地位,从起始顶点出发,通过选择当前可用的最小权值边把顶点加入到生成树当中来:

  1.从连通网络N={V,E}中的某一顶点U0出发,选择与它关联的具有最小权值的边(U0,V),将其顶点加入到生成树的顶点集合U中。

  2.以后每一步从一个顶点在U中,而另一个顶点不在U中的各条边中选择权值最小的边(U,V),把它的顶点加入到集合U中。如此继续下去,直到网络中的所有顶点都加入到生成树顶点集合U中为止。 

  模板题链接:Prim算法求最小生成树

  朴素版时间复杂度O(n²)算法模板:

复制代码
#include <iostream>
#include <cstdio>
#include <algo
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值