import tensorflow as tf
from tensorflow.keras import layers, models
from tensorflow.keras.datasets import mnist
# 假设输入图像的形状是19x19x1(灰度图像)
input_shape = (19, 19, 1)
num_classes = 10 # 假设有10个类别
# 创建模型
model = models.Sequential()
# 添加输入层
model.add(layers.Input(shape=input_shape))
# 添加卷积层
model.add(layers.Conv2D(32, (3, 3), activation='relu', padding='same'))
model.add(layers.MaxPooling2D((2, 2)))
# 添加更多卷积层
model.add(layers.Conv2D(64, (3, 3), activation='relu', padding='same'))
model.add(layers.MaxPooling2D((2, 2)))
# 添加全连接层
model.add(layers.Flatten())
model.add(layers.Dense(128, activation='relu'))
# 添加输出层,输出形状为 (19, 19, num_classes)
model.add(layers.Dense(19 * 19 * num_classes, activation='softmax'))
model.add(layers.Reshape((19, 19, num_classes)))
# 编译模型,使用 categorical_crossentropy 作为损失函数
model.compil
CNN识别围棋棋盘240814
最新推荐文章于 2025-06-03 21:31:47 发布

最低0.47元/天 解锁文章
3744

被折叠的 条评论
为什么被折叠?



