poj_2773_Happy 2006

Two positive integers are said to be relatively prime to each other if the Great Common Divisor (GCD) is 1. For instance, 1, 3, 5, 7, 9...are all relatively prime to 2006.

Now your job is easy: for the given integer m, find the K-th element which is relatively prime to m when these elements are sorted in ascending order.

Input

The input contains multiple test cases. For each test case, it contains two integers m (1 <= m <= 1000000), K (1 <= K <= 100000000).

Output

Output the K-th element in a single line.

Sample Input

2006 1
2006 2
2006 3

Sample Output

1
3
5


分解n的质因子,利用二分法,利用容斥原理求出不互质的数目个数并减去。直到i=k。

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
#define LL long long
#define maxn 70

LL p[maxn];
LL make_ans(LL num,int m)//1到num中的所有数与m个质因子不互质的个数 注意是不互质哦
{
	LL ans=0,tmp,i,j,flag;
	for(i=1;i<(LL)(1<<m);i++)
	{ //用二进制来1,0来表示第几个素因子是否被用到,如m=3,三个因子是2,3,5,则i=3时二进制是011,表示第2、3个因子被用到
		tmp=1,flag=0;
		for(j=0;j<m;j++)
			if(i&((LL)(1<<j)))//判断第几个因子目前被用到
				flag++,tmp*=p[j];
		if(flag&1)//容斥原理,奇加偶减
			ans+=num/tmp;
		else
			ans-=num/tmp;
	}
	return ans;
}

int main()
{
	LL a,b,i;

	LL m,n;
	while(~scanf("%lld%lld",&m,&n))
	{
	    memset(p,0,sizeof(p));
	    LL num=0;
	    LL mm=m;
	    for(LL i=2;i*i<=mm;i++)
        {
            if(mm%i==0)
                p[num++]=i;
            while(mm%i==0)
                mm/=i;
        }
        if(mm!=1)
            p[num++]=mm;
        LL l=1;
        LL r=((LL)1<<31);
        LL ans=0;
        LL res=0;
        while(l<=r)
        {
            LL mid=(l+r)>>1;
            ans=mid-make_ans(mid,num);
            if(ans>n)
                r=mid-1;
            else if(ans<n)
                l=mid+1;
            else{
                res=mid;
                r=mid-1;
            }
        }
        cout<<res<<endl;
	}
	return 0;
}

  

并且在网上看到另一种解法:

http://blog.csdn.net/huangshuai147/article/details/51277645

如果知道欧几里德算法的话就应该知道gcd(b×t+a,b)=gcd(a,b)  (t为任意整数)

则如果a与b互素,则b×t+a与b也一定互素,如果a与b不互素,则b×t+a与b也一定不互素

故与m互素的数对m取模具有周期性,则根据这个方法我们就可以很快的求出第k个与m互素的数

假设小于m的数且与m互素的数有k个,其中第i个是ai,则第m×k+i与m互素的数是k×m+ai

 

附代码

#include<stdio.h>  
int s[1000005];  
int gcd(int a,int b)  
{  
    if(b==0)  
    {  
        return a;  
    }  
    else  
    {  
        return gcd(b,a%b);  
    }  
}  
int main()  
{  
    int m,k;  
    while(scanf("%d%d",&m,&k)!=EOF)  
    {  
        int i;  
        int num=0;  
        for(i=1;i<=m;i++)     
        {  
            if(gcd(m,i)==1)  
            {  
                s[num++]=i;  
            }  
        }  
        if(k%num==0)  
        {  
            printf("%d\n",(k/num-1)*m + s[num-1]);  
        }  
        else  
        {  
            printf("%d\n",k/num*m + s[k%num-1]);  
        }  
    }  
    return 0;  
}  

  

 

转载于:https://www.cnblogs.com/ygtzds/p/8040065.html

内容概要:本文详细介绍了施耐德M580系列PLC的存储结构、系统硬件架构、上电写入程序及CPU冗余特性。在存储结构方面,涵盖拓扑寻址、Device DDT远程寻址以及寄存器寻址三种方式,详细解释了不同类型的寻址方法及其应用场景。系统硬件架构部分,阐述了最小系统的构建要素,包括CPU、机架和模块的选择与配置,并介绍了常见的系统拓扑结构,如简单的机架间拓扑和远程子站以太网菊花链等。上电写入程序环节,说明了通过USB和以太网两种接口进行程序下载的具体步骤,特别是针对初次下载时IP地址的设置方法。最后,CPU冗余部分重点描述了热备功能的实现机制,包括IP通讯地址配置和热备拓扑结构。 适合人群:从事工业自动化领域工作的技术人员,特别是对PLC编程及系统集成有一定了解的工程师。 使用场景及目标:①帮助工程师理解施耐德M580系列PLC的寻址机制,以便更好地进行模块配置和编程;②指导工程师完成最小系统的搭建,优化系统拓扑结构的设计;③提供详细的上电写入程序指南,确保程序下载顺利进行;④解释CPU冗余的实现方式,提高系统的稳定性和可靠性。 其他说明:文中还涉及一些特殊模块的功能介绍,如定时器事件和Modbus串口通讯模块,这些内容有助于用户深入了解M580系列PLC的高级应用。此外,附录部分提供了远程子站和热备冗余系统的实物图片,便于用户直观理解相关概念。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值