Container With Most Water

225 篇文章 0 订阅
50 篇文章 0 订阅

Given n non-negative integers a1a2, ..., an, where each represents a point at coordinate (iai). n vertical lines are drawn such that the two endpoints of line i is at (iai) and (i, 0). Find two lines, which together with x-axis forms a container, such that the container contains the most water.

Note: You may not slant the container.


说的是以数组的下标作为x轴,对应的数值作为高话垂直线,在所有的垂直线当中选出两条,与x轴构成一个‘桶’型,算出桶的最大容积。

第一遍做的时候想的比较简单,用了O(n2)的时间复杂度,运行时提示超时了。 

代码:

public int maxArea(int[] height) {
	 int max = 0;
       for(int i=0;i<height.length-1;i++){
    	   for(int j=i+1;j<height.length;j++){
    		   int temp = height[i]>height[j]?height[j]:height[i];
    		   int area = (j-i)*temp;
    		   if(max<area)
    			   max = area;
    	   }
       }
       return max;
    }

后来网上看到这个思路,觉得讲的还是有道理的:容积的计算需要考察两个因素,一是高,另一个是宽。宽度由 i-j来判断,宽度自然越大越好;而高度是由两个边较低的一方来决定的。可以从宽度最大开始找起,从两边一值往中间扫,而高度则是每次循环只更新一侧的:height[i]跟height[j]哪个小遍更新哪一侧的。


代码:

public int maxArea02(int[] height) {
	 int i = 0,j = height.length-1;
	 int max = 0;
	 while(i<j){
		 int temp = height[i]>height[j]?height[j]:height[i];
		 int area =  (j-i)*temp;
		 if(max <area)
			 max = area;
		 
			if(height[i]>=height[j])
				j--;
			else
				i++;
	 }
	 return max;
	 
 }


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值