Given n non-negative integers a1, a2, ..., an, where each represents a point at coordinate (i, ai). n vertical lines are drawn such that the two endpoints of line i is at (i, ai) and (i, 0). Find two lines, which together with x-axis forms a container, such that the container contains the most water.
Note: You may not slant the container.
说的是以数组的下标作为x轴,对应的数值作为高话垂直线,在所有的垂直线当中选出两条,与x轴构成一个‘桶’型,算出桶的最大容积。
第一遍做的时候想的比较简单,用了O(n2)的时间复杂度,运行时提示超时了。
代码:
public int maxArea(int[] height) {
int max = 0;
for(int i=0;i<height.length-1;i++){
for(int j=i+1;j<height.length;j++){
int temp = height[i]>height[j]?height[j]:height[i];
int area = (j-i)*temp;
if(max<area)
max = area;
}
}
return max;
}
后来网上看到这个思路,觉得讲的还是有道理的:容积的计算需要考察两个因素,一是高,另一个是宽。宽度由 i-j来判断,宽度自然越大越好;而高度是由两个边较低的一方来决定的。可以从宽度最大开始找起,从两边一值往中间扫,而高度则是每次循环只更新一侧的:height[i]跟height[j]哪个小遍更新哪一侧的。
代码:
public int maxArea02(int[] height) {
int i = 0,j = height.length-1;
int max = 0;
while(i<j){
int temp = height[i]>height[j]?height[j]:height[i];
int area = (j-i)*temp;
if(max <area)
max = area;
if(height[i]>=height[j])
j--;
else
i++;
}
return max;
}