Given a N X N matrix Matrix[N][N] of positive integers. There are only three possible moves from a cell Matrix[r][c].
1. Matrix[r+1][c]
2. Matrix[r+1][c-1]
3. Matrix[r+1][c+1]
Starting from any column in row 0, return the largest sum of any of the paths up to row N-1.
Input:
The first line of the input contains an integer T denoting the number of test cases. The description of T test cases follows.
The first line of each test case contains a single integer N denoting the order of matrix. Next line contains N*N integers denoting the elements of the matrix in row-major form.
Output:
Output the largest sum of any of the paths starting from any cell of row 0 to any cell of row N-1. Print the output of each test case in a new line.
Constraints:
1<=T<=20
2<=N<=20
1<=Matrix[i][j]<=1000 (for all 1<=i<=N && 1<=j<=N)
Example:
Input:
1
2
348 391 618 193
Output:
1009
Explanation: In the sample test case, the path leading to maximum possible sum is 391->618. (391 + 618 = 1009)
**For More Examples Use Expected Output**
基本动规
代码:
import java.util.*;
import java.lang.*;
import java.io.*;
class GFG
{
public static void main (String[] args)
{
//code
Scanner input = new Scanner(System.in);
int number = input.nextInt();
int[] inputArray = new int[number];
int[] result = new int[number];
for(int i=0;i<number;i++){
int n = input.nextInt();
int [][] matrix = new int[n][n];
for(int x=0;x<matrix.length;x++){
for(int y = 0;y<matrix.length;y++){
matrix[x][y] = input.nextInt();
}
}
result[i] = compute(matrix);
}
for(int i=0;i<result.length;i++){
System.out.println(result[i]);
}
}
private static int compute(int[][] matrix){
if(matrix == null || matrix.length == 0 || matrix[0].length==0) return 0;
for(int i=1;i<matrix.length;i++){
for(int j=0;j<matrix[0].length;j++){
int left=Integer.MIN_VALUE, right=Integer.MIN_VALUE, top= matrix[i-1][j];
if(j>0) left = matrix[i-1][j-1];
if(j<matrix[0].length-1) right = matrix[i-1][j+1];
matrix[i][j] += Math.max(left, Math.max(right, top));
}
}
int max = Integer.MIN_VALUE;
for(int lastRow: matrix[matrix.length-1]){
max = Math.max(max, lastRow);
}
return max;
}
}