写在最前面
授权声明:本篇文章授权活动官方亚马逊云科技文章转发、改写权,包括不限于在 亚马逊云科技开发者社区, 知乎,自媒体平台,第三方开发者媒体等亚马逊云科技官方渠道
活动链接:「构」向云端 | 2023 re:Invent 构建者征文大赛_活动通知-亚马逊云科技技术品牌专区
本博客将围绕方向一进行创作。
亚马逊云科技开发者社区为开发者们提供全球的开发技术资源。这里有技术文档、开发案例、技术专栏、培训视频、活动与竞赛等。帮助中国开发者对接世界最前沿技术,观点,和项目,并将中国优秀开发者或技术推荐给全球云社区。如果你还没有关注/收藏,看到这里请一定不要匆匆划过,点这里让它成为你的技术宝库!
2023年,生成式人工智能(AI)多次成为热点话题。如果想在轻松有趣的环境中探索这一领域,并且想要亲手构建一些游戏,那么 PartyRock 是一个很好的选择!
这个平台提供了一个独特的实验空间,可以自由地进行尝试,学习生成式 AI 的关键技术和提示工程的精髓,无需编程基础就能开始 AI 创作之旅。
PartyRock 鼓励用户之间的互动和协作,除了可以在这里轻松构建迷你应用程序,还可以与朋友们分享创作的 app。可以从别人共享的应用程序开始,通过调整和优化,将其变成自己独特的作品,增加了创作的乐趣。
现在访问 https://partyrock.aws/?trk=cndc-detail 即可快速体验 PartyRock,并且限时免费哦!
可以输入对想要构建的应用程序的描述,然后使用 PartyRock 的生成式人工智能 LLM 为我们做好构建准备,并且支持二次编辑完善 app。
PartyRock 不仅提供了一个构建应用的强大平台,而且还为用户带来了前所未有的灵活性和创新可能性。无论是初学者还是经验丰富的开发者,都可以在这个平台上发挥创意,构建属于自己的独特应用程序。
快来 PartyRock 构建你的第一个应用程序吧!
欢迎体验我的 app【CybersecuritySimulator网络安全威胁的情景模拟】
关于 PartyRock 生成 app 相关想法的分享
在探索 PartyRock 平台中 app 生成的过程,了解到了 LLM(大型语言模型)的应用+其设计的 prompt 提示词,在实现 app 逻辑方面的独特价值。
优点
先说优点:PartyRock 借助 LLM 大模型,让我们能够利用其先进的自然语言处理能力,来更快、更高效地解析和生成用户友好的界面和功能。 LLM 的一个显著优势在于,其对语言的深度理解和生成能力,这使得在开发过程中能够轻松地构建出符合用户直觉的对话和指令。 此外,LLM 的多样性和适应性使得 PartyRock 能够在多种不同的应用场景中发挥作用,从而提供了极大的灵活性和扩展性。
局限
但这也是 PartyRock 的局限所在,LLM 在处理更为复杂的逻辑或特定技术需求时,可能不够精确或深入。
例如在构建加解密 app 的过程中,发现他对于解密功能就应用的不太好。在解密功能的应用中,这种局限性变得尤为明显。由于加解密过程通常涉及复杂的算法和密钥管理,LLM 可能无法充分理解和实现这些专业化的要求。
推理在实现类似的特定功能时,特别是涉及高度技术性和精确性要求的场景中,如果提示工程设计的不够精准,LLM 的应用效果大概率会不尽人意。
未来展望
从我看来,LLM 作为一种强大的工具,它在应用程序开发中的价值不容小觑。
PartyRock 是一个很好的开始,让我们体验了新时代 LLM 构建 app 的样例。
虽然 LLM 为应用程序开发带来了前所未有的便利和灵活性,但在涉及特定领域专业知识和复杂逻辑时,它仍需要与传统编程方法和相关逻辑的深度知识相结合。这种结合使用可以帮助克服 LLM 在处理复杂任务时的局限性,从而实现更加精准和高效的应用程序设计。
PartyRock 中 app 生成描述的注意事项
我一共尝试了两个 app 的生成,其中另一个 app【加解密】不太成功。
尝试简单的分析了一下,有这么几个影响 LLM(大型语言模型)自动生成有效应用代码的关键因素,大家生成自己的 app 时可以注意一下:
-
描述不够详细:在开发任何软件或应用程序时,清晰、详细的需求说明至关重要。 我的描述虽然涵盖了基本功能,但没有提到一些关键的技术细节,如密钥的生成、存储和管理方式。在加密和解密过程中,密钥扮演着核心角色,它决定了加密的安全性和解密的可行性。不同的加密算法(如对称加密、非对称加密)对密钥的处理方式也不同,这些都需要在需求中明确。
-
加密和解密算法的选择:在应用程序的描述中,没有指定使用哪种加密算法。有多种加密技术,如 AES、RSA、SHA 等,它们各有特点和适用场景。没有具体的算法说明,LLM 难以决定采用哪种加密方法。
-
技术实现的复杂性:即使在清晰的需求指导下,