2023 年,以 GPT 为代表的生成式 AI 引爆了新一轮技术热潮,短短一年的时间内,生成式 AI 已经成为科技世界发展的核心。作为云计算的行业风向标盛会 re ,本届: Invent 全球大会紧跟生成式 AI 浪潮,推出名为“ Amazon Q ”的生成式人工智能助手,同时 Amazon CodeWhisperer 这款用于 IDE 和命令行的 AI 生产力工具,基于 Amazon Q 可以给开发人员带来全新的高效编程体验。
亚马逊云科技开发者社区为开发者们提供全球的开发技术资源。这里有技术文档、开发案例、技术专栏、培训视频、活动与竞赛等。帮助中国开发者对接世界最前沿技术,观点,和项目,并将中国优秀开发者或技术推荐给全球云社区。如果你还没有关注/收藏,看到这里请一定不要匆匆划过,点这里让它成为你的技术宝库!
正如亚马逊云科技首席执行官 Adam Selipsky 在主题演讲中表示 :“生成式AI 将重塑我们在工作和家庭中所运用到的每一个应用程序,我们正在以一种跟以往完全不同的方式来探讨生成式 AI 的整个概念。” Amazon Q 的定位和以往的C端消费级产品不同,生成式 AI 助手在 B 端应用赛道上的竞争者寥寥,而作为开发者看了 Adam Selipsky 的视频介绍,我联想到了实际工作中遇到的问题。
“观望” AI ,企业入场犹豫不决究竟何为
我个人深耕 B 端多年,随着大模型风的兴起,在行业内部接触的客户包括我们自己都在探索 AI 落地的内容,很多企业会有这方面的诉求是因为,传统行业数字化转型过程中,存在着体量大、业务复杂、定制化要求高的问题,其业务有着沉重的 IT 建设包袱,各部门、业务之间难以协同,数据壁垒也难以打破,而大模型可以把人与人、人与机器之间的交互过程数据完整的沉淀下来,让它自主学习进步,持续演进。杜绝了过去的烟囱式建设,降本增效的同时还能推动数字化进程。
但对于 AI 大模型的应用,更多都处于观望+探索的阶段。
一方面,对于大模型的投入产出仍持怀疑态度。另一方面,是数据安全的“刚需”。今年年初,三星就禁止使用 ChatGPT ,其当时三星允许半导体部门的工程师使用 ChatGPT 参与修复源代码问题。 但在过程当中,员工们输入了机密数据,包括新程序的源代码本体、与硬件相关的内部会议记录等数据。导致核心数据泄密。诸如此类机密数据泄漏事件,层出不穷。
事实上,大模型的底层逻辑是将行业数据标注出来进行深度学习,训练出专注于某一行业的垂直模型。这也意味着,企业的数据要集成到通用大模型的数据池中。而又因为企业数据大多涉及商业机密、个人隐私等问题,对数据安全要求甚高。
所以,对于 B 端及 G 端用户而言,其需要的 AI 服务是能在保证数据安全的同时,还可以能集成通用大模型作为能力补充。
面向工作使用的 AI 助手 - Amazon Q
Amazon Q 就是面向工作使用的一款新型生成式 AI 助手,它支持用户输入问题,从而进行聊天、生成内容、编程、插件及定制开发。Amazon Q 可以根据您的业务进行定制,以便使用公司信息存储库、代码库和企业系统中的数据和专业知识进行对话、解决问题、生成内容并采取行动。Amazon Q 提供快速、相关和可操作的信息和建议,有助于简化任务,加快决策和解决问题的速度。在使用亚马逊云科技遇到问题和故障时, Amazon Q 可以一键分析原因并想办法解决。客户可以通过亚马逊云科技管理控制台、文档页面、IDE、Slack 或其他第三方对话应用程序的聊天界面访问 Amazon Q。