自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(98)
  • 收藏
  • 关注

原创 使用 LLMs 在 Ontotext GraphDB 中实现自然语言查询

Ontotext GraphDB 是一个图数据库和知识发现工具,它支持 RDF 和 SPARQL 标准。通过引入大语言模型,我们可以增强 GraphDB 的查询功能,包括生成 GPT 查询、解析结果、索引知识图谱实体等。今天我们主要聚焦在如何利用 LLM 从自然语言生成 SPARQL 查询。今天的教程中,我们深入探讨了如何在 Ontotext GraphDB 中结合大语言模型实现自然语言查询。虽然讲解了很多细节,核心主旨就是让开发者能用更自然的方式与复杂数据进行交互。

2024-12-29 13:21:37 346

原创 如何构建一个强大的Reddit搜索工具

在大数据时代,各个平台用户生成的内容是洞察趋势和获取信息的重要来源。Reddit作为热门的平台之一,其API允许开发者访问和检索大量有价值的数据。今天,我们就来探讨如何使用Python库PRAW和LangChain生态系统中的Reddit搜索工具,来构建一个Reddit数据抽取工具。# 设置Reddit的API密钥# 设置OpenAI的API密钥# 代理链设置")使用这些工具,我们可以实现从Reddit检索信息,并将其集成到智能对话系统中。希望这个技术分享对老铁们有帮助。

2024-12-29 10:07:25 242

原创 使用Intel的Visual Data Management System (VDMS)作为向量存储的实战教程

K近邻搜索欧几里得距离 (L2) 和 内积 (IP)另外,它也提供了多种用于索引和计算距离的库,比如TileDBDense、TileDBSparse、Faiss等,可以支持文本、图像和视频的嵌入,以及向量和元数据的搜索。VDMS不仅提供了多种索引和距离计算策略,而且与LangChain的结合使得其在向量搜索方面十分强大。适合需要处理大规模视觉数据的应用场景。老铁们,这就是今天的技术分享,希望对大家有帮助。开发过程中遇到问题也可以在评论区交流~—END—

2024-12-28 23:56:19 256

原创 如何使用 LanceDB 进行向量搜索与存储

LanceDB 是一个开源的数据库,特别适合存储和处理向量数据。随着 AI 应用的普及,处理向量作为高效检索的基础已经变得越来越重要。LanceDB 基于 Lance 数据格式设计,支持在云端运行,并且可以与多种嵌入模型结合使用。除了文本,LanceDB 也支持图像。你可以用来进行多模态搜索。还可以把数据表导出为 Pandas DataFrame 或 CSV 文件,以便进一步分析。# 图片下载和嵌入实例化# 添加图像和文本。

2024-12-28 20:14:41 324

原创 Oracle AI Vector Search实战:生成语义嵌入

这一整套流程不仅让你灵活地生成嵌入,还能结合Oracle Database的强大功能实现更复杂的RAG(Retrieval-Augmented Generation)管道,以及相关的图形和区块链分析。当然,如果你在开发过程中碰到任何问题,随时可以在评论区和大伙交流。今天的技术分享就到这里,希望对大家有帮助。---END---

2024-12-28 02:17:06 220

原创 在OpenVINO上部署高效的语言模型推理

OpenVINO™ Runtime能够在不同的硬件设备上运行相同的优化模型。我们来看一个经典的应用场景:使用HuggingFacePipeline类在本地运行OpenVINO模型。在部署模型时,只需设置即可让OpenVINO成为推理的后端框架。为了使用它,你需要安装包含OpenVINO加速功能的Python包。老铁们,这波操作可以说是相当丝滑。通过OpenVINO,我们不仅提升了模型的推理速度,还降低了硬件成本。如果你想了解更多,可以查看和其他相关文档。今天的技术分享就到这里,希望对大家有帮助。

2024-12-27 19:31:03 606

原创 初探OCI生成式AI服务和ChatOCIGenAI模型

Oracle提供了一款强大的生成式AI服务,OCIGenAI。它是一种完全托管的服务,可通过单一API提供一组可定制的顶尖大语言模型(LLMs),适用于广泛的应用场景。你可以使用预训练的模型,也可以基于自己的数据在专用的AI集群上创建和托管定制模型。如果你对这个服务感兴趣,我个人一直在用 Oracle 的生成式AI服务进行复杂项目开发,体验非常不错。更多详细文档可以参考API参考。今天的技术分享就到这里,希望对大家有帮助。开发过程中遇到问题也可以在评论区交流~—END—

2024-12-27 12:53:53 326

原创 在Azure Cosmos DB上实现高级向量搜索和索引管理

Azure Cosmos DB是OpenAI的ChatGPT服务背后的数据库引擎,其强大的性能让我们可以在几乎任何规模下保证响应速度。对于MongoDB爱好者,Azure还提供了兼容的vCore服务,让你可以继续使用熟悉的MongoDB驱动和工具。在操作中,也可以使用Azure Cosmos DB支持的预过滤功能,这在处理复杂查询时尤其有用。总的来说,这套方案能够高效地处理大规模数据的查询需求。老铁们可以访问Azure Cosmos DB 文档以获取更多技术细节。今天的技术分享就到这里,希望对大家有帮助。

2024-12-27 09:12:09 536

原创 使用 Guardrails Output Parser 保护LLM输出

在大语言模型广泛应用的今天,验证输出内容的安全性和符合性变得尤为重要。使用技术来对LLM的输出进行验证,防止输出中出现不当言论,比如脏话、敏感信息等。值得一提的是,如果Guardrails没有发现任何不当内容,翻译后的输出会原样返回。有问题的内容则会被替换为空字符串。这样,你可以确保应用的输出是干净和合规的。今天的技术分享就到这里,希望对大家有帮助。开发过程中遇到问题也可以在评论区交流~—END—

2024-12-25 13:23:10 262

原创 单元与集成测试:高效开发的基础

在我们的项目中,我们倾向于使用单元测试而不是集成测试,这主要是因为单元测试运行迅速且可靠。单元测试会在每一个Pull Request时被触发,让我们可以自信地进行代码变更。而集成测试则是每天运行一次,它们需要更多的准备工作,专注于确认与外部服务的接口。代码覆盖率可以帮助我们识别代码的脆弱点。总而言之,老铁们,测试是开发中的关键环节。它不仅确保代码的稳定性,更提高了我们的开发效率。今天的技术分享就到这里,希望对大家有帮助。开发过程中遇到问题也可以在评论区交流~—END—

2024-12-25 11:59:32 365

原创 LangChain 仓库结构指南

老铁们,今天我们来聊聊 LangChain 的仓库结构。如果你计划为 LangChain 的代码或者文档做贡献,了解它的高层次结构还是很有帮助的。LangChain 是作为一个monorepo(单体仓库)组织的,它包含多个包。关于这些包如何协同工作的详细信息,可以参考我们的。Makefile还有一些其他文件存在于根目录层级,不过它们的存在理由都显而易见。大家可以随意浏览!

2024-12-25 11:25:06 306

原创 从RetrievalQA到LCEL的迁移:增强自然语言问答系统

链是在一个数据源上使用增强型生成的自然语言问答系统。这个老方法已经在许多项目中得到应用,但为了实现更高的定制化和更高效的操作,我们考虑迁移到LCEL实现。迁移到LCEL更易于定制化:通过特定的参数,我们可以在细节上进行更深度的定制。返回源文件更简单:能更方便地获取问题答案所用的数据源。支持可运行的方法:包含流式传输和异步操作,这波操作可以说是相当丝滑。在这次迁移中,老铁们要注意,不仅是代码上的变更,更是我们对新架构和新功能的理解与应用。

2024-12-25 07:04:50 225

原创 自定义输出解析器的创建指南

在AI模型中,输出的结构化是非常常见的需求,尤其是当我们需要特定格式输出的时候。自定义解析器就是为了解决这个问题,让我们能更好地处理模型的输出。当然,老铁们也可以从等基类继承实现更复杂的解析器,但通常情况下代码量会多出不少,而且效果没有更好。# 解析逻辑...比较一下,使用Runnable接口的解析器更加简洁和优雅。今天的技术分享就到这里,希望对大家有帮助。开发过程中遇到问题也可以在评论区交流~—END—

2024-12-25 01:44:40 195

原创 如何提升Graph-RAG中的查询生成效果

老铁们,今天咱们来聊聊如何在Graph-RAG中提升图数据库查询生成的效果。重点是如何在提示中获取与数据库具体相关的信息,从而生成更精确的查询。

2024-12-24 16:30:06 288

原创 [如何为LangChain做出贡献:指南与建议]

老铁们!作为一个开源项目,我们非常欢迎任何形式的贡献,无论是新功能的开发、基础设施的改进、文档的完善,还是Bug的修复。下面我将为大家介绍一些参与的方式和注意事项,希望能帮助到有心参与的朋友们。

2024-12-24 12:14:48 381

原创 使用 Kay.ai API 实现实时上下文检索

在构建 AI 应用时,实时上下文获取一直是个老大难的问题。我们需要让 AI 能够迅速理解和响应当前状况。Kay.ai 提供的嵌入技术解决方案,正是为此而生。它利用最新的大模型进行快速数据检索,并且几乎不需要额外的基础设施投入。在这次分享中,主要演示了如何使用 Kay.ai 的 API 来进行实时上下文的获取,其实原理并不复杂,通过嵌入和 API 的结合,我们能大大提高 AI 代理的响应能力。这个平台在我看来是非常值得一试的。今天的技术分享就到这里,希望对大家有帮助。开发过程中遇到问题也可以在评论区交流~

2024-12-23 08:59:01 236

原创 深入了解CoNLL-U格式:加载与解析

这篇文章介绍了CoNLL-U格式的基本概念和加载方法。CoNLL-U格式详细介绍Python库处理CoNLL-U的示例。

2024-12-22 11:40:28 291

原创 探索FireworksEmbeddings在LangChain中的应用:文本嵌入的秘密武器

LangChain文档FireworksEmbeddings官方指南。

2024-12-22 04:37:56 404

原创 [深入理解Anyscale Embeddings API:快速实现高效文本向量化]

本文介绍了如何使用Anyscale Embeddings进行文本向量化。通过简单的Python代码示例和相关注意事项,您可以轻松上手并解决常见问题。

2024-12-22 02:51:39 421

原创 探索Yi LLM: 从安装到流式处理的完整指南

LLM概念指南LLM使用指南。

2024-12-22 02:29:16 411

原创 高效部署:利用Intel扩展实现Hugging Face模型的权重量化

权重量化是优化模型表现和资源利用率的重要工具。通过为Hugging Face模型引入Intel的量化扩展,我们能够在更少资源消耗的情况下保持模型的效率和精度。更多内容可以参考LLM如何指南和概念指南。

2024-12-22 02:12:02 399

原创 使用Langchain与LiteLLM Router有效调用多家AI平台API

LiteLLM是一个简化多平台AI API调用的Python库。通过配置模型列表和必要的API参数,我们可以轻松调用不同平台的语言模型。LiteLLM Router结合了这些API调用,形成一个统一的接口,方便开发者在不同平台间切换。通过LiteLLM Router,我们能够有效地管理和调用多个AI平台的API,简化了开发流程。

2024-12-21 16:14:23 466

原创 [掌握Anthropic聊天API:提升工具调用与结构化输出能力的实践指南]

尽管Anthropic Tools Wrapper目前是实验性的,但它为开发者提供了丰富的工具调用和结构化输出能力,有助于探索更复杂的AI应用。Chat模型概念指南Chat模型使用指南。

2024-12-21 14:02:11 327

原创 [如何使用阿里云PAI-EAS快速部署AI模型服务]

PAI-EAS是阿里云PAI平台的核心组成部分之一,支持不同类型的硬件资源如CPU和GPU,具有高吞吐量和低延迟的特点。用户可以通过简单的点击操作,迅速在云端部署大型复杂模型,并根据需求实时进行弹性伸缩。同时,PAI-EAS提供了完整的运维和监控系统,以确保服务的稳定性和高效性。PAI-EAS提供了一个强大且灵活的平台,适用于各种AI应用场景。通过本文的介绍,你应该对如何在阿里云上使用PAI-EAS进行模型部署和推理有了基本的了解。阿里云PAI-EAS官方文档Chat模型概念指南Chat模型使用指南。

2024-12-21 13:56:18 485

原创 [解锁创造力:使用DALL-E生成惊艳的图像]

通过DALL-E,你可以将创意转换为视觉图像,为项目增添新的维度。建议结合OpenAI的其他工具和资源,如GPT模型,探索生成内容的新可能性。

2024-12-21 13:38:03 157

原创 探索PowerBI Toolkit:如何与Power BI数据集交互,获取答案并处理错误

通过添加自定义问题和答案示例,调整代理的行为。--------"""credential=DefaultAzureCredential(), # 使用API代理服务提高访问稳定性),通过PowerBI Toolkit,用户能够高效地与Power BI数据集进行交互,得到快速而有用的分析结果。

2024-12-21 13:08:41 252

原创 [通过YouTube转录API解锁视频内容:实现及最佳实践]

通过本文的介绍,您应当对如何从YouTube视频中提取转录信息有了基础的了解。LangChain文档加载器指南Google API Python客户端。

2024-12-21 10:43:51 187

原创 [使用El Carro整合Langchain实现Oracle数据库消息历史存储]

通过El Carro和Langchain的强大组合,可以轻松管理和扩展Oracle数据库的功能。Google Cloud El Carro官方文档Langchain GitHub项目。

2024-12-21 10:07:07 337

原创 利用Google Cloud Text-to-Speech实现自然语言合成

通过本文的介绍,您已经掌握了使用Google Cloud Text-to-Speech API进行语音合成的基础。此API提供丰富的选项,可以根据不同需求自定义语音输出。Google Cloud Text-to-Speech 官方文档DeepMind的WaveNet技术介绍。

2024-12-21 08:39:50 427

原创 [深入探索Google Memorystore for Redis:构建快速AI文档处理系统]

本文介绍了如何使用 Google Memorystore for Redis 快速存储和处理文档的基本方法。此方法非常适合需要处理大量数据的 AI 应用。Google Memorystore 官方文档Langchain 文档加载器指南。

2024-12-21 07:08:15 720

原创 为你的项目解锁潜力:使用Google Vertex AI PaLM生成强大嵌入

Google Vertex AI PaLM 提供了强大的文本嵌入能力,可以大大提高你的应用在自然语言处理任务中的表现。

2024-12-21 06:09:42 387

原创 [为您的数据管道保驾护航:WhyLabs平台详解]

WhyLabs提供了一个强大的平台来监控和优化您的数据管道与机器学习模型。通过whylogs开源包,您可以在几分钟内实现数据集的统计分析,并将其上传到WhyLabs进行集中化监控和警报设置。WhyLabs官方文档whylogs GitHub仓库。

2024-12-21 02:33:00 232

原创 使用Weights & Biases优化LangChain实验记录

通过将Weights & Biases集成到LangChain中,开发者可以更加高效地跟踪和管理AI实验。未来的研究可以更深入探索W&B的高级功能,例如复杂度度量和自定义可视化。进一步学习资源W&B官方网站LangChain文档WandbTracer示例Colab笔记本。

2024-12-21 02:16:05 386

原创 如何高效利用Telegram API进行聊天数据加载与分析

利用Telegram API进行数据加载和分析无疑为开发者提供了极大的便利。通过本文所提供的步骤和代码示例,相信你能够有效使用这些工具。在此基础上,可以进一步学习Telegram的官方API文档和相关社区的技术文章,以掌握更多高级用法。

2024-12-21 00:21:49 334

原创 使用Streamlit构建和共享数据应用的快速指南

Streamlit通过简化Web应用的开发流程,极大地提升了数据科学家的生产力。Streamlit文档Streamlit社区Streamlit示例应用。

2024-12-20 23:53:16 329

原创 【解锁AI的持久记忆:Remembrall平台安装与使用指南】

使用Remembrall平台,您可以为AI模型赋予长期记忆能力,提升交互质量和用户体验。Remembrall 官方文档Github 上的Remembrall 项目。

2024-12-20 21:56:51 565

原创 探索Reddit API:Python入门与实践

了解和使用Reddit API可以为你的项目提供丰富的数据支持。从用户生成的内容中获取洞察是一个充满潜力的领域。推荐进一步阅读Reddit API的官方文档和探索更多praw库的功能。

2024-12-20 21:51:08 398

原创 [深入了解Modern Treasury:简化复杂支付操作的未来工具]

Modern Treasury是简化复杂支付操作的强大工具,凭借其连接性、实时性和自动化功能,为企业提供了显著的运营效率提升。Modern Treasury 官方文档Langchain社区资源。

2024-12-20 18:50:41 402

原创 探索Jaguar向量数据库:高效处理多模态数据的新选择

Jaguar向量数据库为处理多模态数据提供了强大的工具,在LangChain中集成使用可以极大提升AI应用的效率。Jaguar官方文档LangChain与Jaguar结合使用的示例Notebook。

2024-12-20 16:20:51 703

原创 [探索Hologres:实时数据仓库与高性能向量搜索的完美结合]

Hologres是一个强大的数据仓库服务,支持SQL查询,兼容PostgreSQL,并可处理PB级数据。它不仅支持高并发和低延迟的在线数据服务,还提供实时的OLAP能力。Hologres的与众不同之处在于它整合了来自阿里巴巴达摩院的高性能向量库Proxima,提供卓越的向量搜索能力。Hologres结合了实时数据处理和高性能向量搜索,为开发者提供了一站式的大数据解决方案。通过其强大的功能,用户可以高效地管理和分析海量数据。进一步学习可以参考阿里云开发者文档和相关的技术社区论坛。

2024-12-20 15:28:45 394

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除