使用 LLMs 在 Ontotext GraphDB 中实现自然语言查询

老铁们,今天咱们来看看如何在 Ontotext GraphDB 上通过大语言模型(LLM)实现自然语言查询。这种技术也叫做 text2sparql,主要目的是将自然语言转化为 SPARQL 查询。在这个教程中,我们会利用 Star Wars API (SWAPI) 的本体和数据集来进行演示。

技术背景介绍

Ontotext GraphDB 是一个图数据库和知识发现工具,它支持 RDF 和 SPARQL 标准。通过引入大语言模型,我们可以增强 GraphDB 的查询功能,包括生成 GPT 查询、解析结果、索引知识图谱实体等。今天我们主要聚焦在如何利用 LLM 从自然语言生成 SPARQL 查询。

原理深度解析

GraphDB 支持多种 LLM 集成功能,比如:

  • GPT 查询:利用 LLM 从知识图谱中提取文本、列表或表格。
  • 查询解释:不仅能生成为 SPARQL 查询,还能解释结果,进行总结和翻译。
  • 检索-graphdb-connector:把知识图谱的实体索引到矢量数据库中。

在这个教程中,我们将主要使用 SPARQL 的自然语言生成,所以我们需要搭建一个 GraphDB 环境并载入 Star Wars 数据集。

实战代码演示

设置环境

确保你有一个运行中的 GraphDB 实例。为了简单,我们使用 Docker 来快速搭建一个本地 GraphDB 环境:

docker build --tag graphdb .
docker compose up -d graphdb

等待数据库启动后,可以在浏览器中访问 http://localhost:7200/ 来确认。

开始开发

安装所需的 Python 库并启动 Jupyter Notebook 环境:

# 用 conda 新建环境
conda create -n graph_ontotext_graphdb_qa python=3.9.18
conda activate graph_ontotext_graphdb_qa

# 安装所需库
pip install jupyter==1.0.0
pip install openai==1.6.1
pip install rdflib==7.0.0
pip install langchain-openai==0.0.2
pip install langchain>=0.1.5

# 启动 Jupyter
jupyter notebook

构建 SPARQL 查询

首先,我们需要将本体(ontology)提供给 LLM。可以通过本地 RDF 文件或直接从 SPARQL 端点获取:

from langchain_community.graphs import OntotextGraphDBGraph

graph = OntotextGraphDBGraph(
    query_endpoint="http://localhost:7200/repositories/langchain",
    query_ontology="CONSTRUCT {?s ?p ?o} FROM <https://swapi.co/ontology/> WHERE {?s ?p ?o}",
)

我们还可以用 OntotextGraphDBQAChain 来进行自然语言问答:

import os
from langchain.chains import OntotextGraphDBQAChain
from langchain_openai import ChatOpenAI

os.environ["OPENAI_API_KEY"] = "sk-***"

chain = OntotextGraphDBQAChain.from_llm(
    ChatOpenAI(temperature=0, model_name="gpt-4-1106-preview"),
    graph=graph,
    verbose=True,
)

result = chain.invoke({chain.input_key: "What is the climate on Tatooine?"})[chain.output_key]
print(result)  # 输出:'The climate on Tatooine is arid.'

优化建议和链修改

这个 QA 链允许我们对提示进行细化,改进查询的准确性。例如,可以通过修改 sparql_generation_prompt 来优化 SPARQL 生成过程。

在查询的过程中,如果遇到语法错误,还可以使用 sparql_fix_prompt 来进行自动修正。

补充说明和总结

今天的教程中,我们深入探讨了如何在 Ontotext GraphDB 中结合大语言模型实现自然语言查询。虽然讲解了很多细节,核心主旨就是让开发者能用更自然的方式与复杂数据进行交互。

这波操作可以说是相当丝滑,当然,过程中如果有碰到问题或者需要进一步探讨,欢迎在评论区留言交流。

今天的技术分享就到这里,希望对大家有帮助。开发过程中遇到问题也可以在评论区交流~

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值