Java 常见排序

概念

  • 排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。
    平时的上下文中,如果提到排序,通常指的是排升序(非降序)。
    通常意义上的排序,都是指的原地排序(in place sort)。

  • 稳定性,两个相等的数据,如果经过排序后,排序算法能保证其相对位置不发生变化,则我们称该算法是具备稳定性的排序 算法。

总览

  • 插入排序:直接插入排序,希尔排序
  • 选择排序:堆排序,选择排序
  • 交换排序:冒泡排序,快速排序
  • 归并排序

插入排序

直接插入排序

原理:
整个区间被分为:1. 有序区间 2. 无序区间
每次选择无序区间的第一个元素,在有序区间内选择合适的位置插入

public static void insertSort(int[] array) {    
	for (int i = 1; i < array.length; i++) {        
		// 有序区间: [0, i)        
		// 无序区间: [i, array.length)        
		int v = array[i];   // 无序区间的第一个数        
		int j = i - 1;        
		// 不写 array[j] == v 是保证排序的稳定性        
		for (; j >= 0 && array[j] > v; j--) {            
			array[j + 1] = array[j];        
		}        
		array[j + 1] = v;    
	} 
}

性能: 时间O(n^2) 空间:O(1) 稳定
排序越有序,时间复杂度越低,逆序最高

折半插入排序_

在有序区间选择数据应该插入的位置时,因为区间的有序性,可以利用折半查找的思想。

public static void bsInsertSort(int[] array) {    
	for (int i = 1; i < array.length; i++) {        
		int v = array[i];        
		int left = 0;        
		int right = i;        
		// [left, right)        
		// 需要考虑稳定性        
		while (left < right) {            
			int m = (left + right) / 2;            
			if (v >= array[m]) {                
				left = m + 1;            
			} else {                
				right = m;            
			}        
		}
		// 搬移        
        	for (int j = i; j > left; j--) {            
        		array[j] = array[j - 1];        
        	}
        	array[left] = v;    
        } 
}

希尔排序

希尔排序法又称缩小增量法。
希尔排序法的基本思想是:先选定一个整数,把待排序文件中所有记录分成个组,所有距离为数组长度一半的记录分在同一组内,并对每一组内的记录进行排序。然后,取,重复上述分组和排序的工作。当到达gap ==1 时,所有记录在统一组内排好序。

  1. 希尔排序是对直接插入排序的优化。
  2. 当gap > 1时都是预排序,目的是让数组更接近于有序。当gap == 1时,数组已经接近有序的了,这样就会很 快。这样整体而言,可以达到优化的效果。我们实现后可以进行性能测试的对比。
public static void shellSort(int[] array) {    
	int gap = array.length;    
	while (gap > 1) {        
		insertSortGap(array, gap);        
		gap = (gap / 3) + 1;    
		// OR gap = gap / 2;    
	}    
	insertSortGap(array, 1); 
}
 
private static void insertSortGap(int[] array, int gap) {    
	for (int i = 1; i < array.length; i++) {        
		int v = array[i];        
		int j = i - gap;        
		for (; j >= 0 && array[j] > v; j -= gap) {            	
			array[j + gap] = array[j];        
		}        
		array[j + gap] = v;    
	} 
}

性能: 时间O(n^1.3)–平均 空间 O(1) 不稳定

选择排序

直接选择排序

每一次从无序区间选出最大(或最小)的一个元素,存放在无序区间的最后(或最前),直到全部待排序的数据元 素排完 。

public static void selectSort(int[] array) {    
	for (int i = 0; i < array.length - 1; i++) {        
		// 无序区间: [0, array.length - i)        
		// 有序区间: 
		//[array.length - i, array.length)        
		int max = 0;        
		for (int j = 1; j < array.length - i; j++) {            
			if (array[j] > array[max]) {                
			max = j;            
			}        
		}                
		int t = array[max];        
		array[max] = array[array.length - i - 1];        
		array[array.length - i - 1] = t;    
	} 
}

性能:时间O(n^2) 空间O(1) 不稳定 数据不敏感

双向选择排序_

每一次从无序区间选出最小 + 最大的元素,存放在无序区间的最前和最后,直到全部待排序的数据元素排完

public static void selectSortOP(int[] array) {
	int low = 0;    
	int high = array.length - 1;    
	// [low, high] 表示整个无序区间    
	// 无序区间内只有一个数也可以停止排序了    
	while (low <= high) {        
		int min = low;        
		int max = low;        
		for (int i = low + 1; i <= max; i++) {            
			if (array[i] < array[min]) {                
				min = i;            
			}            
			if (array[i] > array[max]) {                
				max = i;            
			}        
		}                
		swap(array, min, low);        
		// 见下面例子讲解        
		if (max == low) {            
			max = min;        
		}        
		swap(array, max, high);    
	} 
}
 
private void swap(int[] array, int i, int j) {    
	int t = array[i];    
	array[i] = array[j];    
	array[j] = t; 
}

堆排序

基本原理也是选择排序,只是不在使用遍历的方式查找无序区间的最大的数,而是通过堆来选择无序区间的最大的数。
注意: 排升序要建大堆;排降序要建小堆。

public static void heapSort(int[] array) {    	
	createHeap(array);    
	for (int i = 0; i < array.length - 1; i++) {        
	// 交换前        
	// 无序区间: [0, array.length - i)        
	// 有序区间: [array.length - i, array.length)        
		swap(array, 0, array.length - 1);        
	// 交换后        
	// 无序区间: [0, array.length - i - 1)        
	// 有序区间: [array.length - i - 1, array.length)        
	// 无序区间长度: array.length - i - 1        
		shiftDown(array, array.length - i - 1, 0);    
	} 
}
private void swap(int[] array, int i, int j) {    
	int t = array[i];    
	array[i] = array[j];    
	array[j] = t; 
}
 
private void createHeap(int[] array) {    
	for (int i = (array.length - 1) / 2; i >= 0; i--) {        
		shiftDown(array, array.length, i);    
	} 
}
 
public static void shiftDown(int[] array, int size, int index) {    
	int left = 2 * index + 1;    
	while (left < size) {        
		int max = left;        
		int right = 2 * index + 2;        
		if (right < size) {            
			if (array[right] > array[left]) {                
				max = right;            
			}        
		}                
		if (array[index] >= array[max]) {            
			break;        
		}                
		int t = array[index];        
		array[index] = array[max];        
		array[max] = t;                
		index = max;        
		left = 2 * index + 1;    
	} 
}

性能:时间O(n*log(n)) 空间 O(1) 不稳定 数据不敏感

交换排序

冒泡排序

在无序区间,通过相邻数的比较,将最大的数冒泡到无序区间的最后,持续这个过程,直到数组整体有序

public static void bubbleSort(int[] array) {    
	for (int i = 0; i < array.length - 1; i++) {        
		boolean isSorted = true;        
		for (int j = 0; j < array.length - i - 1; j++) {            
		// 相等不交换,保证稳定性            
			if (array[j] > array[j + 1]) {                
				swap(array, j, j + 1);                
				isSorted = false;            
			}        
		}        
		if (isSorted) {            
			break;        
		}    
	} 
}

性能:时间O(n^2) 空间 O(1) 稳定

快速排序

原理–>总览

  1. 从待排序区间选择一个数,作为基准值(pivot);
  2. Partition: 遍历整个待排序区间,将比基准值小的(可以包含相等的)放到基准值的左边,将比基准值大的 (可以包含相等的)放到基准值的右边;
  3. 采用分治思想,对左右两个小区间按照同样的方式处理,直到小区间的长度 = =1,代表已经有序,或者小区间的长度 == 0,代表没有数据。
public static void quickSort(int[] array) {    
	quickSortInternal(array, 0, array.length - 1); 
}
// [left, right] 为待排序区间 
private static void quickSortInternal(int[] array, int left, int right) {    
	if (left == right) {        
		return;    
	}    
	if (left > right) {        
		return;    
	}    
	// 最简单的选择基准值的方式,选择 array[left] 作为基准值    
	// pivotIndex 代表基准值最终停留的下标    
	int pivotIndex = partition(array, left, right);    
	// [left, pivotIndex - 1] 都是小于等于基准值的    
	// [pivotIndex + 1, right] 都是大于等于基准值的    
	quickSortInternal(array, left, pivotIndex - 1);    
	quickSortInternal(array, pivotIndex + 1, right); 
}

Hoare 法

private static int partition(int[] array, int left, int right) {    
	int i = left;    
	int j = right;    
	int pivot = array[left];    
	while (i < j) {        
		while (i < j && array[j] >= pivot) {            
			j--;        
		}                
		while (i < j && array[i] <= pivot) {            
			i++;        
		}
		 swap(array, i, j);    
	}    
	swap(array, i, left);    
	return i; 
}

挖坑法:
基本思路和Hoare 法一致,只是不再进行交换,而是进行赋值(填坑+挖坑)

private static int partition(int[] array, int left, int right) {    
	int i = left;    
	int j = right;    
	int pivot = array[left];    
	while (i < j) {        
		while (i < j && array[j] >= pivot) {            
			j--;        
		}                
		array[i] = array[j];                
		while (i < j && array[i] <= pivot) {            
			i++;        
		}                
		array[j] = array[i];    
	}    
	array[i] = pivot;    
	return i; 
}

前后遍历法:

private static int partition(int[] array, int left, int right) {    
	int d = left + 1;    
	int pivot = array[left];    
	for (int i = left + 1; i <= right; i++) {        
		if (array[i] < pivot) {            	
			swap(array, i, d);            
			d++;        
		}    
	}    
	swap(array, d - 1, left);        
	return d - 1; 
}

性能:时间O(n*log(n)) 空间 O(log(n)) 不稳定

基准值选择:

  1. 选择边上(左或者右)
  2. 随机选择
  3. 几数取中(例如三数取中):array[left], array[mid], array[right] 大小是中间的为基准值

非递归分治

public static void quickSort(int[] array) {    
	Stack<Integer> stack = new Stack<>();    
	stack.push(array.length - 1);    
	stack.push(0);        
	while (!stack.isEmpty()) {        
		int left = stack.pop();        
		int right = stack.pop();        
		if (left >= right) {            
			continue;        
		}                
		int pivotIndex = partition(array, left, right);        
		stack.push(right);        
		stack.push(pivotIndex + 1);                
		stack.push(pivotIndex - 1);        
		stack.push(left);    
	} 
}

优化总结

  1. 选择基准值很重要,通常使用几数取中法
  2. partition 过程中把和基准值相等的数也选择出来
  3. 待排序区间小于一个阈值时(例如 48),使用直接插入排序

总结

  1. 在待排序区间选择一个基准值
    1. 选择左边或者右边
    2. 随机选取
    3. 几数取中法
  2. 做 partition,使得小的数在左,大的数在右
    1. hoare
    2. 挖坑
    3. 前后遍历
    4. 将基准值相等的也选择出来(了解)
  3. 分治处理左右两个小区间,直到小区间数目小于一个阈值,使用插入排序

归并排序

归并排序(MERGE-SORT)是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使 子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。

public static void mergeSort(int[] array) {    
	mergeSortInternal(array, 0, array.length); 
}
// 待排序区间为 [low, high) 
private static void mergeSortInternal(int[] array, int low, int high) {    
	if (low >= high - 1) {        
		return;    
	}        
	int mid = (low + high) / 2;    
	mergeSortInternal(array, low, mid);    
	mergeSortInternal(array, mid, high);        
	merge(array, low, mid, high); 
}

性能:时间O(n*log(n)) 空间 O(n) 稳定 数据不敏感

非递归版

public static void mergeSort(int[] array) {    
	for (int i = 1; i < array.length; i = i * 2) {        
		for (int j = 0; j < array.length; j = j + 2 * i) {            
			int low = j;            
			int mid = j + i;            
			if (mid >= array.length) {                
				continue;            
			}
			 int high = mid + i;            
			 if (high > array.length) {                
			 	high = array.length;            
			 }                        
			 merge(array, low, mid, high);        
		}    
	} 
}

海量数据排序
外部排序:排序过程需要在磁盘等外部存储进行的排序
前提:内存只有 1G,需要排序的数据有 100G
因为内存中因为无法把所有数据全部放下,所以需要外部排序,而归并排序是最常用的外部排序

  1. 先把文件切分成 200 份,每个 512 M
  2. 分别对 512 M 排序,因为内存已经可以放的下,所以任意排序方式都可以
  3. 进行 200 路归并,同时对 200 份有序文件做归并过程,最终结果就有序了

排序总结

排序方法最好平均最坏空间复杂度稳定性
冒泡排序O(n)O(n^2)O(n^2)O(1)稳定
插入排序O(n)O(n^2)O(n^2)O(1)稳定
选择排序O(n^2)O(n^2)O(n^2)O(1)不稳定
希尔排序O(n)O(n^1.3)O(n^2)O(1)不稳定
堆排序O(n * log(n))O(n * log(n))O(n * log(n))O(1)不稳定
快速排序O(n * log(n))O(n * log(n))O(n^2)O(log(n)) ~ O(n)不稳定
归并排序O(n * log(n))O(n * log(n))O(n * log(n))O(n)稳定

在这里插入图片描述

其他排序算法

  1. 计数排序
  2. 基数排序
  3. 桶排序
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值