概念
-
排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。
平时的上下文中,如果提到排序,通常指的是排升序(非降序)。
通常意义上的排序,都是指的原地排序(in place sort)。 -
稳定性,两个相等的数据,如果经过排序后,排序算法能保证其相对位置不发生变化,则我们称该算法是具备稳定性的排序 算法。
总览
- 插入排序:直接插入排序,希尔排序
- 选择排序:堆排序,选择排序
- 交换排序:冒泡排序,快速排序
- 归并排序
插入排序
直接插入排序
原理:
整个区间被分为:1. 有序区间 2. 无序区间
每次选择无序区间的第一个元素,在有序区间内选择合适的位置插入
public static void insertSort(int[] array) {
for (int i = 1; i < array.length; i++) {
// 有序区间: [0, i)
// 无序区间: [i, array.length)
int v = array[i]; // 无序区间的第一个数
int j = i - 1;
// 不写 array[j] == v 是保证排序的稳定性
for (; j >= 0 && array[j] > v; j--) {
array[j + 1] = array[j];
}
array[j + 1] = v;
}
}
性能: 时间O(n^2) 空间:O(1) 稳定
排序越有序,时间复杂度越低,逆序最高
折半插入排序_
在有序区间选择数据应该插入的位置时,因为区间的有序性,可以利用折半查找的思想。
public static void bsInsertSort(int[] array) {
for (int i = 1; i < array.length; i++) {
int v = array[i];
int left = 0;
int right = i;
// [left, right)
// 需要考虑稳定性
while (left < right) {
int m = (left + right) / 2;
if (v >= array[m]) {
left = m + 1;
} else {
right = m;
}
}
// 搬移
for (int j = i; j > left; j--) {
array[j] = array[j - 1];
}
array[left] = v;
}
}
希尔排序
希尔排序法又称缩小增量法。
希尔排序法的基本思想是:先选定一个整数,把待排序文件中所有记录分成个组,所有距离为数组长度一半的记录分在同一组内,并对每一组内的记录进行排序。然后,取,重复上述分组和排序的工作。当到达gap ==1 时,所有记录在统一组内排好序。
- 希尔排序是对直接插入排序的优化。
- 当gap > 1时都是预排序,目的是让数组更接近于有序。当gap == 1时,数组已经接近有序的了,这样就会很 快。这样整体而言,可以达到优化的效果。我们实现后可以进行性能测试的对比。
public static void shellSort(int[] array) {
int gap = array.length;
while (gap > 1) {
insertSortGap(array, gap);
gap = (gap / 3) + 1;
// OR gap = gap / 2;
}
insertSortGap(array, 1);
}
private static void insertSortGap(int[] array, int gap) {
for (int i = 1; i < array.length; i++) {
int v = array[i];
int j = i - gap;
for (; j >= 0 && array[j] > v; j -= gap) {
array[j + gap] = array[j];
}
array[j + gap] = v;
}
}
性能: 时间O(n^1.3)–平均 空间 O(1) 不稳定
选择排序
直接选择排序
每一次从无序区间选出最大(或最小)的一个元素,存放在无序区间的最后(或最前),直到全部待排序的数据元 素排完 。
public static void selectSort(int[] array) {
for (int i = 0; i < array.length - 1; i++) {
// 无序区间: [0, array.length - i)
// 有序区间:
//[array.length - i, array.length)
int max = 0;
for (int j = 1; j < array.length - i; j++) {
if (array[j] > array[max]) {
max = j;
}
}
int t = array[max];
array[max] = array[array.length - i - 1];
array[array.length - i - 1] = t;
}
}
性能:时间O(n^2) 空间O(1) 不稳定 数据不敏感
双向选择排序_
每一次从无序区间选出最小 + 最大的元素,存放在无序区间的最前和最后,直到全部待排序的数据元素排完
public static void selectSortOP(int[] array) {
int low = 0;
int high = array.length - 1;
// [low, high] 表示整个无序区间
// 无序区间内只有一个数也可以停止排序了
while (low <= high) {
int min = low;
int max = low;
for (int i = low + 1; i <= max; i++) {
if (array[i] < array[min]) {
min = i;
}
if (array[i] > array[max]) {
max = i;
}
}
swap(array, min, low);
// 见下面例子讲解
if (max == low) {
max = min;
}
swap(array, max, high);
}
}
private void swap(int[] array, int i, int j) {
int t = array[i];
array[i] = array[j];
array[j] = t;
}
堆排序
基本原理也是选择排序,只是不在使用遍历的方式查找无序区间的最大的数,而是通过堆来选择无序区间的最大的数。
注意: 排升序要建大堆;排降序要建小堆。
public static void heapSort(int[] array) {
createHeap(array);
for (int i = 0; i < array.length - 1; i++) {
// 交换前
// 无序区间: [0, array.length - i)
// 有序区间: [array.length - i, array.length)
swap(array, 0, array.length - 1);
// 交换后
// 无序区间: [0, array.length - i - 1)
// 有序区间: [array.length - i - 1, array.length)
// 无序区间长度: array.length - i - 1
shiftDown(array, array.length - i - 1, 0);
}
}
private void swap(int[] array, int i, int j) {
int t = array[i];
array[i] = array[j];
array[j] = t;
}
private void createHeap(int[] array) {
for (int i = (array.length - 1) / 2; i >= 0; i--) {
shiftDown(array, array.length, i);
}
}
public static void shiftDown(int[] array, int size, int index) {
int left = 2 * index + 1;
while (left < size) {
int max = left;
int right = 2 * index + 2;
if (right < size) {
if (array[right] > array[left]) {
max = right;
}
}
if (array[index] >= array[max]) {
break;
}
int t = array[index];
array[index] = array[max];
array[max] = t;
index = max;
left = 2 * index + 1;
}
}
性能:时间O(n*log(n)) 空间 O(1) 不稳定 数据不敏感
交换排序
冒泡排序
在无序区间,通过相邻数的比较,将最大的数冒泡到无序区间的最后,持续这个过程,直到数组整体有序
public static void bubbleSort(int[] array) {
for (int i = 0; i < array.length - 1; i++) {
boolean isSorted = true;
for (int j = 0; j < array.length - i - 1; j++) {
// 相等不交换,保证稳定性
if (array[j] > array[j + 1]) {
swap(array, j, j + 1);
isSorted = false;
}
}
if (isSorted) {
break;
}
}
}
性能:时间O(n^2) 空间 O(1) 稳定
快速排序
原理–>总览
- 从待排序区间选择一个数,作为基准值(pivot);
- Partition: 遍历整个待排序区间,将比基准值小的(可以包含相等的)放到基准值的左边,将比基准值大的 (可以包含相等的)放到基准值的右边;
- 采用分治思想,对左右两个小区间按照同样的方式处理,直到小区间的长度 = =1,代表已经有序,或者小区间的长度 == 0,代表没有数据。
public static void quickSort(int[] array) {
quickSortInternal(array, 0, array.length - 1);
}
// [left, right] 为待排序区间
private static void quickSortInternal(int[] array, int left, int right) {
if (left == right) {
return;
}
if (left > right) {
return;
}
// 最简单的选择基准值的方式,选择 array[left] 作为基准值
// pivotIndex 代表基准值最终停留的下标
int pivotIndex = partition(array, left, right);
// [left, pivotIndex - 1] 都是小于等于基准值的
// [pivotIndex + 1, right] 都是大于等于基准值的
quickSortInternal(array, left, pivotIndex - 1);
quickSortInternal(array, pivotIndex + 1, right);
}
Hoare 法
private static int partition(int[] array, int left, int right) {
int i = left;
int j = right;
int pivot = array[left];
while (i < j) {
while (i < j && array[j] >= pivot) {
j--;
}
while (i < j && array[i] <= pivot) {
i++;
}
swap(array, i, j);
}
swap(array, i, left);
return i;
}
挖坑法:
基本思路和Hoare 法一致,只是不再进行交换,而是进行赋值(填坑+挖坑)
private static int partition(int[] array, int left, int right) {
int i = left;
int j = right;
int pivot = array[left];
while (i < j) {
while (i < j && array[j] >= pivot) {
j--;
}
array[i] = array[j];
while (i < j && array[i] <= pivot) {
i++;
}
array[j] = array[i];
}
array[i] = pivot;
return i;
}
前后遍历法:
private static int partition(int[] array, int left, int right) {
int d = left + 1;
int pivot = array[left];
for (int i = left + 1; i <= right; i++) {
if (array[i] < pivot) {
swap(array, i, d);
d++;
}
}
swap(array, d - 1, left);
return d - 1;
}
性能:时间O(n*log(n)) 空间 O(log(n)) 不稳定
基准值选择:
- 选择边上(左或者右)
- 随机选择
- 几数取中(例如三数取中):array[left], array[mid], array[right] 大小是中间的为基准值
非递归分治
public static void quickSort(int[] array) {
Stack<Integer> stack = new Stack<>();
stack.push(array.length - 1);
stack.push(0);
while (!stack.isEmpty()) {
int left = stack.pop();
int right = stack.pop();
if (left >= right) {
continue;
}
int pivotIndex = partition(array, left, right);
stack.push(right);
stack.push(pivotIndex + 1);
stack.push(pivotIndex - 1);
stack.push(left);
}
}
优化总结
- 选择基准值很重要,通常使用几数取中法
- partition 过程中把和基准值相等的数也选择出来
- 待排序区间小于一个阈值时(例如 48),使用直接插入排序
总结
- 在待排序区间选择一个基准值
- 选择左边或者右边
- 随机选取
- 几数取中法
- 做 partition,使得小的数在左,大的数在右
- hoare
- 挖坑
- 前后遍历
- 将基准值相等的也选择出来(了解)
- 分治处理左右两个小区间,直到小区间数目小于一个阈值,使用插入排序
归并排序
归并排序(MERGE-SORT)是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使 子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。
public static void mergeSort(int[] array) {
mergeSortInternal(array, 0, array.length);
}
// 待排序区间为 [low, high)
private static void mergeSortInternal(int[] array, int low, int high) {
if (low >= high - 1) {
return;
}
int mid = (low + high) / 2;
mergeSortInternal(array, low, mid);
mergeSortInternal(array, mid, high);
merge(array, low, mid, high);
}
性能:时间O(n*log(n)) 空间 O(n) 稳定 数据不敏感
非递归版
public static void mergeSort(int[] array) {
for (int i = 1; i < array.length; i = i * 2) {
for (int j = 0; j < array.length; j = j + 2 * i) {
int low = j;
int mid = j + i;
if (mid >= array.length) {
continue;
}
int high = mid + i;
if (high > array.length) {
high = array.length;
}
merge(array, low, mid, high);
}
}
}
海量数据排序
外部排序:排序过程需要在磁盘等外部存储进行的排序
前提:内存只有 1G,需要排序的数据有 100G
因为内存中因为无法把所有数据全部放下,所以需要外部排序,而归并排序是最常用的外部排序
- 先把文件切分成 200 份,每个 512 M
- 分别对 512 M 排序,因为内存已经可以放的下,所以任意排序方式都可以
- 进行 200 路归并,同时对 200 份有序文件做归并过程,最终结果就有序了
排序总结
排序方法 | 最好 | 平均 | 最坏 | 空间复杂度 | 稳定性 |
---|---|---|---|---|---|
冒泡排序 | O(n) | O(n^2) | O(n^2) | O(1) | 稳定 |
插入排序 | O(n) | O(n^2) | O(n^2) | O(1) | 稳定 |
选择排序 | O(n^2) | O(n^2) | O(n^2) | O(1) | 不稳定 |
希尔排序 | O(n) | O(n^1.3) | O(n^2) | O(1) | 不稳定 |
堆排序 | O(n * log(n)) | O(n * log(n)) | O(n * log(n)) | O(1) | 不稳定 |
快速排序 | O(n * log(n)) | O(n * log(n)) | O(n^2) | O(log(n)) ~ O(n) | 不稳定 |
归并排序 | O(n * log(n)) | O(n * log(n)) | O(n * log(n)) | O(n) | 稳定 |
其他排序算法
- 计数排序
- 基数排序
- 桶排序