解决AttributeError: ‘Sequential‘ object has no attribute ‘predict_classes‘问题

新版Tensorflow移除了predict_classes方法,推荐使用predict。但predict返回概率数组而非类别标签。通过使用np.argmax将predict结果转换为类别标签,即可得到与旧版相同的结果。解决方案是用np.argmax(model.predict(x_Test),axis=1)替换predict_classes。
摘要由CSDN通过智能技术生成

出现此问题是由于新版的Tensorflow将predict_classes删除了,新版只有predict

但两者返回值不同

prediction=model.predict_classes(x_Test)

prediction

原本目标得到结果应该为:

array([7, 2, 1, ..., 4, 5, 6], dtype=int64)
prediction=model.predict(x_Test)

prediction

得到结果:

array([[0., 0., 0., ..., 1., 0., 0.],
       [0., 0., 1., ..., 0., 0., 0.],
       [0., 1., 0., ..., 0., 0., 0.],
       ...,
       [0., 0., 0., ..., 0., 0., 0.],
       [0., 0., 0., ..., 0., 0., 0.],
       [0., 0., 0., ..., 0., 0., 0.]], dtype=float32)

此时,如下解决:

将prediction=model.predict_classes(x_Test)中等号右侧改为np.argmax(model.predict(x_Test),axis=1)

prediction=np.argmax(model.predict(x_Test),axis=1)

就可得出相同结果。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值