DBCP,C3P0,Tomcat_JDBC druidDatasource性能及稳定性测试
1.测试环境:
硬件环境:
数据库服务器:2U*8核 8G内存
测试服务器: 2U*8核 6G内存
软件环境:
jdk:
1.6.29
mysql:
5.0.77
mysql_driver:
mysql-connector-java-5.0.8-bin.jar
DBCP:
commons-dbcp-1.4.jar
下载地址: http://commons.apache.org/dbcp/
commons-pool-1.5.6.jar
下载地址: http://commons.apache.org/pool/
C3P0:
c3p0-0.9.1.2.jar
下载地址: http://www.mchange.com/projects/c3p0/index.html
log4j-1.2.8.jar(c3p0需要添加此包)
下载地址: http://logging.apache.org/log4j/
Tomcat_JDBC:
tomcat-jdbc.jar
下载地址: https://tomcat.apache.org/tomcat-7.0-doc/jdbc-pool.html
或者在tomcat安装根目录下的lib目录中直接拿来用之
tomcat-juli.jar
下载地址:(没找到)
在tomcat安装根目录下的bin目录中直接拿来用之
配置信息:
数据库连接超时时间设置为: 10年
数据库支持最大连接数设置为:2000
初始化连接池大小:10
连接至最小活动线程数:10
连接池最大活动线程数:100
其他配置均保持各个连接池的默认配置
2.性能测试:
测试点:
在多线程多任务的条件下,各个连接池获取连接然后马上关闭连接,比较所消耗的时间。
在网上看了好多关于数据库连接池方面的测试,
大多数测试过程中,包括了执行sql语句部分,即,创建连接,执行sql语句,关闭连接,
一开始我也是这样测试,
测试过过程中,发现数据很不稳定,这几个连接池都是忽快忽慢,
经过思考、分析,个人 觉得这样是不准确的,执行sql语句时,测试已经不是数据库连接池的性能了,
完全是数据库驱动程序(例如mysql_driver )和数据库本身的性能,
数据库连接池负责的仅仅是建立DataSource,获取(从连接池中获取)Connection,关闭(放回到连接池)Connection,
因此,
我在测试时,没有计算初始化连接池(建立DataSource)的时间,而是连接池“获取连接然后马上关闭连接”的时间。
测试结果:
DB POOL | 线程 数量 | 单线程 执行次数 | 消耗时间 (ms) | 开始时间 (ms) | 结束时间 (ms) | 平均消耗 时间(ms) | 平均单条 时间(ms) |
DBCP | 10 | 1000 | 251 | 1328863445815.00 | 1328863446066.00 | 251 | 0.0251 |
252 | 1328863466569.00 | 1328863466821.00 | |||||
251 | 1328863477174.00 | 1328863477425.00 | |||||
254 | 1328863487555.00 | 1328863487809.00 | |||||
247 | 1328863499474.00 | 1328863499721.00 | |||||
C3P0 | 10 | 1000 | 781 | 1328863372064.00 | 1328863372845.00 | 802.8 | 0.08028 |
789 | 1328863385489.00 | 1328863386278.00 | |||||
879 | 1328863401335.00 | 1328863402214.00 | |||||
773 | 1328863413608.00 | 1328863414381.00 | |||||
792 | 1328863424693.00 | 1328863425485.00 | |||||
TomcatJDBC | 10 | 1000 | 191 | 1328863272642.00 | 1328863272833.00 | 191.8 | 0.01918 |
197 | 1328863303126.00 | 1328863303323.00 | |||||
187 | 1328863313262.00 | 1328863313449.00 | |||||
195 | 1328863324253.00 | 1328863324448.00 | |||||
189 | 1328863334700.00 | 1328863334889.00 |
DB POOL | 线程 数量 | 单线程 执行次数 | 消耗时间 (ms) | 开始时间 (ms) | 结束时间 (ms) | 平均消耗 时间(ms) | 平均单条 时间(ms) |
DBCP | 100 | 1000 | 786 | 1328862922748.00 | 1328862923534.00 | 810.4 | 0.008104 |
853 | 1328862939832.00 | 1328862940685.00 | |||||
810 | 1328862955354.00 | 1328862956164.00 | |||||
807 | 1328862981344.00 | 1328862982151.00 | |||||
796 | 1328862994825.00 | 1328862995621.00 | |||||
C3P0 | 100 | 1000 | 2517 | 1328863021884.00 | 1328863024401.00 | 2248.8 | 0.022488 |
2340 | 1328863040949.00 | 1328863043289.00 | |||||
1968 | 1328863075044.00 | 1328863077012.00 | |||||
2256 | 1328863092216.00 | 1328863094472.00 | |||||
2163 | 1328863114138.00 | 1328863116301.00 | |||||
TomcatJDBC | 100 | 1000 | 752 | 1328863155803.00 | 1328863156555.00 | 726 | 0.00726 |
725 | 1328863171617.00 | 1328863172342.00 | |||||
694 | 1328863183983.00 | 1328863184677.00 | |||||
703 | 1328863195628.00 | 1328863196331.00 | |||||
756 | 1328863209798.00 | 1328863210554.00 |
DB POOL | 线程 数量 | 单线程 执行次数 | 消耗时间 (ms) | 开始时间 (ms) | 结束时间 (ms) | 平均消耗 时间(ms) | 平均单条 时间(ms) |
DBCP | 150 | 1000 | 1919 | 1328861533609.00 | 1328861535528.00 | 1854.4 | 0.012363 |
1957 | 1328861551638.00 | 1328861553595.00 | |||||
1869 | 1328861746964.00 | 1328861748833.00 | |||||
1916 | 1328861791533.00 | 1328861793449.00 | |||||
1611 | 1328861832003.00 | 1328861833614.00 | |||||
C3P0 | 150 | 1000 | 2726 | 1328861869415.00 | 1328861872141.00 | 2990.8 | 0.019939 |
2570 | 1328861895349.00 | 1328861897919.00 | |||||
3342 | 1328861912351.00 | 1328861915693.00 | |||||
3218 | 1328861929664.00 | 1328861932882.00 | |||||
3098 | 1328861950163.00 | 1328861953261.00 | |||||
TomcatJDBC | 150 | 1000 | 877 | 1328861974599.00 | 1328861975476.00 | 861 | 0.00574 |
821 | 1328861990969.00 | 1328861991790.00 | |||||
890 | 1328862016507.00 | 1328862017397.00 | |||||
857 | 1328862037077.00 | 1328862037934.00 | |||||
860 | 1328862052490.00 | 1328862053350.00 |
DB POOL | 线程 数量 | 单线程 执行次数 | 消耗时间 (ms) | 开始时间 (ms) | 结束时间 (ms) | 平均消耗 时间(ms) | 平均单条 时间(ms) |
DBCP | 300 | 1000 | 3908 | 1328862516139.00 | 1328862520047.00 | 3851.8 | 0.012839 |
3850 | 1328862408362.00 | 1328862412212.00 | |||||
3939 | 1328862440877.00 | 1328862444816.00 | |||||
3806 | 1328862469116.00 | 1328862472922.00 | |||||
3756 | 1328862495883.00 | 1328862499639.00 | |||||
C3P0 | 300 | 1000 | 6111 | 1328862711585.00 | 1328862717696.00 | 6233.2 | 0.020777 |
5162 | 1328862618669.00 | 1328862623831.00 | |||||
6261 | 1328862638870.00 | 1328862645131.00 | |||||
6832 | 1328862659598.00 | 1328862666430.00 | |||||
6800 | 1328862681808.00 | 1328862688608.00 | |||||
TomcatJDBC | 300 | 1000 | 3458 | 1328862152316.00 | 1328862155774.00 | 3403.8 | 0.011346 |
3376 | 1328862308211.00 | 1328862311587.00 | |||||
3397 | 1328862227685.00 | 1328862231082.00 | |||||
3342 | 1328862261681.00 | 1328862265023.00 | |||||
3446 | 1328862358400.00 | 1328862361846.00 |
结论:
总体性能:TomcatJDBC > DBCP > C3P0
网上好多资料都说C3P0的性能要好于DBCP,从我的测试结果来看并不是这样,也许是我的配置有不正确的地方,
测试时最大的活动线程配置为100,并发为150线程时,TomcatJDBC的优势明显,
也就是当并发超过连接池最大的活动线程数,但并没有超过太多的情况下,TomcatJDBC的优势明显,
我测试的结果都是毫秒级,
对于一个小型的系统,并发压力不大时,选择哪个连接池都没有太大差别,考虑更多的应该是连接池的稳定性。
3.稳定性测试:
测试点:
1.当数据库由于未知原因关闭,重新启动后,连接池是否可以自动重连,无需重启应用服务。
2.应用服务正常,数据库服务正常,但是网络环境异常,导致连接中断,此时连接池中连接处于“半连接”状态,
现象:
在不重启应用服务的情况下, mysql数据库进行重启操作,mysql完全重启后,执行程序,
TomcatJDBC和DBCP并没有自动重连,重复执行查询语句,会一直报异常,重启应用服务后恢复正常
C3P0进行了自动重连,重复执行查询语句,执行正常。
结论:
默认配置条件下,TomcatJDBC和DBCP并没有自动重连机制,查看官方文档,这缺陷可以通过修改配置解决。
另:
连接池重连机制,有2种:
1.同步验证方式:
每次获取连接或关闭连接时,执行一个预定义的验证语句(sql语句),
验证连接池中的连接是否有效,如果验证失败,彻底关闭此连接,
这种方式会导致每次执行数据库操作时都有额外的开销,对性能影响较大。
2.心跳验证方式:
每隔特定的时间进行一次验证,执行一个预定义的验证语句(sql语句),
验证连接池中的连接是否有效,如果验证失败,彻底关闭此连接,
可以根据具体情况,适当的调节验证间隔时间。
这种方式以牺牲较小的性能开销为代价,来保持系统的稳定性。
4.心得
自从tomcat7发布以来,网络上开始出现一个新的连接池的影子,tomcat jdbc,
经过测试,发现tomcat jdbc的性能果然不错,是连接池不二的选择,
本人E文水平有限,没办法把E文翻译的那么优雅,
tomcat jdbc的其他优点,还请看它的官网介绍
https://tomcat.apache.org/tomcat-7.0-doc/jdbc-pool.html
这篇文章详细介绍阐述dbcp与c3p0的一些不足:
Why another connection pool project
重连机制:
不推荐使用同步验证方式,
如果系统架构中,网络环境(应用服务与数据库服务之间)不稳定,硬件环境不稳定,推荐使用心跳验证方式。
如果系统架构中,网络环境和硬件环境都机器稳定,而且对数据库I/O性能要求较高时,可以不进行验证。
转自:http://aub.iteye.com/blog/1404219
补充,刚看到的druidDatasource 测试
Changes (30)
View Page History添加 -server参数
h1. 场景一
单线程测试,连续执行100万次,对比时间、YungGC、FullGC的情况。这个场景用于测试非激烈竞争的情况下的性能差别。
h3. 测试代码
svn : http://code.alibabatech.com/svn/druid/trunk/src/test/java/com/alibaba/druid/pool/benckmark/Case0.java
连续执行1000,000次,Druid和DBCP的测试对比结果:
||连接池|| 时间(毫秒) || YungGC || FullGC ||
private String user;
private String password;
private String driverClass;
private int initialSize = 10;
private int minPoolSize = 1;
private int maxPoolSize = 2;
private int maxActive = 2;
jdbcUrl = "jdbc:fake:dragoon_v25masterdb";
user = "dragoon25";
password = "dragoon25";
driverClass = "com.alibaba.druid.mock.MockDriver";
}
多个线程,连续打开关闭连接1000,000次。
DruidDataSource dataSource = new DruidDataSource();
http://code.alibabatech.com/svn/druid/trunk/src/test/java/com/alibaba/druid/pool/benckmark/Case1.java
连续执行1000,000次,Druid和DBCP的测试对比结果:
||连接池||线程数量 ||时间(毫秒) || YungGC || FullGC ||
| BoneCP |2 |2,242 | 8 |0|
dataSource.setDriverClassName(driverClass);
dataSource.setUrl(jdbcUrl);
dataSource.setPoolPreparedStatements(true);
dataSource.setUsername(user);
dataSource.setPassword(password);
dataSource.setValidationQuery("SELECT 1");
dataSource.setTestOnBorrow(true);
p0(dataSource, "druid");
}
System.out.println();
}
final BasicDataSource dataSource = new BasicDataSource();
dataSource.setMaxActive(maxActive);
dataSource.setMinIdle(minPoolSize);
dataSource.setMaxIdle(maxPoolSize);
dataSource.setPoolPreparedStatements(true);
dataSource.setDriverClassName(driverClass);
dataSource.setUrl(jdbcUrl);
dataSource.setPoolPreparedStatements(true);
dataSource.setUsername(user);
dataSource.setPassword(password);
dataSource.setValidationQuery("SELECT 1");
dataSource.setTestOnBorrow(true);
p0(dataSource, "dbcp");
}
System.out.println();
}
private void p0(DataSource dataSource, String name) throws SQLException {
long startMillis = System.currentTimeMillis();
long startYGC = TestUtil.getYoungGC();
long startFullGC = TestUtil.getFullGC();
final int COUNT = 1000 * 1000;
for (int i = 0; i < COUNT; ++i) {
Connection conn = dataSource.getConnection();
conn.close();
}
long millis = System.currentTimeMillis() - startMillis;
long ygc = TestUtil.getYoungGC() - startYGC;
long fullGC = TestUtil.getFullGC() - startFullGC;
System.out.println(name + " millis : " + NumberFormat.getInstance().format(millis) + ", YGC " + ygc + " FGC " + fullGC);
}
}
{code}