Linformer: Self-Attention with Linear Complexity

Linformer: Self-Attention with Linear Complexity

FAIR NIPS 2020

Abstract

​ Because of the standard self-attention mechanism of transformer uses O(n2)O(n^2)O(n2) time and space with respect to sequence length, this paper demonstrates that self-attention mechanism can be approximated by a low-rank matrix and further proposes a new self-attention mechanism by introducing 2 projection matrices, which reduces the overall complexity to O(n)O(n)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值