#include <iostream>
using namespace std;
int main()
{ int Mul(int ,int);
int c;
int num;
cin>>c; //zong;
for(int i = 0; i<c; i++) //zong
{ int a,b,mul;
cin>>num;
mul = 1;
while (num>0)
{
cin>>a;
mul = Mul(mul,a);
num --;
}
cout<<mul<<endl;
}
return 0;
}
int gcd(int a, int b)
{
if((a%b) ==0)
return b;
else
return gcd(b,a%b);
}
int Mul(int a,int b)
{
if(b>a)
{
int t = b;
b= a;
a = t;
}
return a/gcd(a,b)*b;
}
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)#include <iostream>
using namespace std;
int main()
{ int Mul(int ,int);
int c;
int num;
cin>>c; //zong;
for(int i = 0; i<c; i++) //zong
{ int a,b,mul;
cin>>num;
mul = 1;
while (num>0)
{
cin>>a;
mul = Mul(mul,a);
num --;
}
cout<<mul<<endl;
}
return 0;
}
int gcd(int a, int b)
{
if((a%b) ==0)
return b;
else
return gcd(b,a%b);
}
int Mul(int a,int b)
{
if(b>a)
{
int t = b;
b= a;
a = t;
}
return a/gcd(a,b)*b;
}
Total Submission(s): 22692 Accepted Submission(s): 8457
Problem Description
The least common multiple (LCM) of a set of positive integers is the smallest positive integer which is divisible by all the numbers in the set. For example, the LCM of 5, 7 and 15 is 105.
Input
Input will consist of multiple problem instances. The first line of the input will contain a single integer indicating the number of problem instances. Each instance will consist of a single line of the form m n1 n2 n3 ... nm where m is the number of integers in the set and n1 ... nm are the integers. All integers will be positive and lie within the range of a 32-bit integer.
Output
For each problem instance, output a single line containing the corresponding LCM. All results will lie in the range of a 32-bit integer.
Sample Input
2 3 5 7 15 6 4 10296 936 1287 792 1
Sample Output
105 10296