- 博客(137)
- 资源 (13)
- 收藏
- 关注

原创 [模型优化] 1. 模型转换
本文详细介绍了深度学习模型转换的相关技术,涵盖格式转换、计算图优化、算子融合和内存布局优化等方法,旨在帮助开发者高效地将模型部署到不同硬件平台。
2025-05-19 11:55:53
836

原创 [模型部署] 3. 性能优化
这篇文章介绍了深度学习模型部署中的性能优化技术,主要包括模型量化、模型剪枝等方法。模型量化通过降低模型精度来减少计算量和内存占用,分为静态量化、动态量化和量化感知训练,分别适用于不同场景。
2025-05-16 23:22:57
809

原创 [模型部署] 1. 模型导出
本文详细介绍了如何将深度学习模型导出为不同部署格式,包括ONNX、TorchScript等,并对比了各种格式的优缺点及适用场景。
2025-05-16 08:19:11
1175

原创 [训练和优化] 2. 超参数调优
本文详细介绍了深度学习模型超参数调优的多种方法,涵盖学习率调整、批量大小选择、优化器参数调优及超参数搜索等关键内容。
2025-05-14 07:47:08
587

原创 [模型构建] 2. 模型构建
本文详细介绍了深度学习模型的构建方法,涵盖模型定义、参数初始化、前向传播等核心内容,并提供了实用的代码示例。首先,通过PyTorch的nn.Module类定义模型,推荐模块化设计以提高代码复用性和可读性。文章还展示了残差网络(ResNet)等高级模型的实现,并介绍了其他复杂模型如DenseNet和Transformer。此外,文章讨论了模型可视化工具(如Netron、TensorBoard)和参数初始化策略,包括Xavier、He等常用方法,并提供了初始化代码示例。最后,强调了model.apply()在递
2025-05-12 07:30:00
1920

原创 EfficientNet详解
EfficientNet是一种高效的深度学习模型,其核心设计理念是通过**复合缩放(Compound Scaling)**统一调整网络的深度、宽度和分辨率,突破传统单维度缩放的局限。
2025-05-12 07:30:00
643

原创 [模型构建] 1. 基础模型结构
本文系统梳理了深度学习中常见的基础模型架构,涵盖其理论基础、典型结构、实现代码及实践建议,旨在为读者提供清晰的模型选择和实现参考。
2025-05-09 11:31:40
1098
1

原创 [数据处理] 7. 数据质量评估
本文系统介绍了数据质量评估的核心维度、方法、监控机制及优化策略。数据质量的核心维度包括完整性、准确性和一致性,分别从样本、特征、标签等方面进行衡量。评估方法涵盖基础统计分析、异常值检测等,帮助快速识别数据问题。监控机制通过分布漂移和标签分布监控,确保数据的持续可靠性。此外,文章还提供了数据质量报告的生成方法和可视化工具,帮助用户直观了解数据状态。最后,文章提出了常用的数据清洗方法和验证规则,为数据质量改进提供了实用策略。通过这些方法,用户可以有效提升数据的质量,进而提高深度学习模型的性能与可靠性。
2025-05-09 08:09:43
837

原创 [数据处理] 5. 数据预处理
分层预处理原则数值型特征:标准化/归一化 + 非线性变换类别型特征:目标编码 + 嵌入表示时间特征:周期编码 + 滑动窗口统计版本控制策略使
2025-05-08 14:21:17
1032

原创 [数据处理] 3. 数据集读取
PyTorch中数据读取的基本概念是`Dataset`和`DataLoader`。`Dataset`是一个抽象类,用于表示数据集。它包含了数据集的长度、索引、数据获取等方法。`DataLoader`是一个类,用于将数据集按批次加载到模型中。它包含了数据读取、数据转换、数据打乱等方法。
2025-05-07 18:03:00
1101

原创 [数据处理] 4. 数据增广
什么是数据增广?数据增广(Data Augmentation)是指通过对原始训练数据进行一系列变换操作,人工生成新的训练样本的技术。其核心目标是通过增加数据多样性来:
2025-05-07 09:26:51
736

原创 [数据处理] 2. 开源数据集
在深度学习的训练过程中,开源数据集是宝贵的资源,为模型的开发与验证提供了丰富多样的样本数据。对于初学者而言,借助这些数据集进行学习,不仅能够快速上手相关任务,还能深入理解模型的训练流程与评估方法。
2025-05-06 16:56:43
872

原创 [数据处理] 1. 数据处理流程
数据质量大于数量:1000条精准标注数据,胜于10000条噪声数据。贴近真实分布:验证集应匹配目标场景。建立闭环机制:推动“数据-模型”协同演化。
2025-05-06 16:51:09
710

原创 [预备知识] 6. 优化理论(二)
技术主要作用典型应用场景注意事项学习率衰减精细收敛深层网络训练配合warmup效果更佳梯度裁剪稳定训练阈值需随batch size调整批量归一化加速收敛CNN、全连接网络小batch效果差。
2025-05-02 19:11:03
1036

原创 [预备知识] 5. 优化理论(一)
梯度下降是优化领域的基石算法,其核心思想是沿负梯度方向迭代更新参数。θt1θt−α∇θJθtα∇θJ:在三维空间中,梯度下降如同沿着最陡下降方向下山。
2025-05-02 19:07:05
1112

原创 [环境配置] 1. 开发环境搭建
本文档将详细介绍如何搭建深度学习开发环境,包括Python环境配置、IDE选择与配置以及虚拟环境管理。也会介绍一下最近比较流行的uv工具。它是一个用Rust编写的极其快速的Python包和项目管理工具。uv是一个非常强大的工具,它可以帮助你管理你的Python项目和包。它可以创建、安装、卸载、更新、管理、发布Python项目和包。
2025-04-07 22:32:41
1055

原创 jupyterlab extension添加插件及配置
jupyterlab extension添加插件及配置改配置文件修改UI主题设置显示行号查看插件jupyterlab-execute-time安装配置改配置文件在jupyterlab中可以添加一些插件或者做一些设置,使你的工作更加方便。开启Extension Manager,在Settings > Advanced Settingd Editor打开Settings文件,选择需要设置的内容,将System Defaults复制到User Preferences,并将对应的值修改。然后Ct
2021-03-23 11:19:12
4782

原创 RTX3090 GPU环境配置
GPU环境配置安装Nvidia显卡驱动安装CUDA安装cuDNN安装Nvidia显卡驱动nvidia-smi安装CUDAnvcc -V安装cuDNNls /usr/local/cuda/include/cudnn.h |grep CUDNN_MAJOR -A 2
2021-03-04 17:32:50
2810
6

原创 在安全帽佩戴检测数据集训练YOLOv5--训练过程记录
在安全帽佩戴检测数据集训练YOLOv5--训练过程记录参考链接数据集安装依赖包修改配置文件tensorboard训练参考链接SafetyHelmetWearing-Dataset(安全帽佩戴检测数据集)Train Custom Data(YOLOv5 训练自定义数据集)yolov5汉化版数据集BaiduDriveGoogleDrive在安全帽佩戴检测数据集训练YOLOv5–数据集处理安装依赖包挂载谷歌云端硬盘:from google.colab import drivedrive.m
2021-01-05 19:19:17
4357
6

原创 在安全帽佩戴检测数据集训练YOLOv5--数据集处理
在安全帽佩戴检测数据集训练YOLOv5--数据集处理参考链接数据集处理数据集参考链接SafetyHelmetWearing-Dataset(安全帽佩戴检测数据集)Train Custom Data(YOLOv5 训练自定义数据集)yolov5汉化版数据集BaiduDriveGoogleDrive因为我是直接在Google Colab上训练的,所以直接打开第二个链接添加到云端硬盘,解压即可;如果是无法访问Google,那就百度盘下载吧!数据集解包:!unzip -q VOC2028.zi
2021-01-05 18:49:15
7988
13
原创 OMP: Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized.
这种方法同样有效,但是可能会改变原有的环境中的包,谨慎使用。这种方法有效但是每开启一次终端就得设置一次。下文将介绍3个解决方法。这种方法可能会不生效。
2023-09-20 15:22:48
647
原创 VS Code 使用 autoDocstring 插件快速生成 python 函数的文档字符串
支持自定义模板。该扩展使用 mustache.js 模板引擎。要使用自定义模板,请创建一个.mustache文件,并使用配置指定其路径。查看随附的谷歌文档字符串模板以获取使用示例。以下标记可在自定义模板中使用。变量段落{{/args}}
2023-07-21 11:45:49
4300
原创 生成项目的包依赖文件requirements.txt
但是,这个命令只适用于一个环境只安装了当前工程的依赖包,因为,这个命令会将环境中的包全部导出,而不是你项目中的。:兼容版本,使用任何大于或等于指定版本,但不大于当前发行系列的版本,例如。文件会列出此项目需要的包,按照其中的包名和版本号安装即可。在安装部署代码时或者使用别人的项目时,会需要安装项目的依赖包,需要原来项目的正常运行环境下执行。将项目的依赖包列出在。文件的情况,进行覆盖。
2023-03-13 14:39:18
896
原创 vscode生成模板文件
在PyCharm中可以设置新建文件时生成模板文件,在VSCode中没有这个功能,但是VSCode中可以设置代码段,可以用来实现同样功能
2022-06-28 14:43:27
599
MobaXterm.zip
2021-05-25
Traffic Signs Dataset in YOLO format.zip
2021-03-24
大型高效、灵活、可信的文件共享
2020-12-18
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人