各种排序算法

本文深入探讨了插入排序、冒泡排序、选择排序、快速排序、归并排序、堆排序、二叉树排序、桶排序、基数排序、计数排序等排序算法,通过详细解释算法原理、复杂度分析及应用场景,揭示了它们之间的联系与区别,帮助读者全面理解排序算法的核心概念与实际应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

总介绍:

http://www.cnblogs.com/zhaoshuai1215/p/3448154.html


先说下算法的稳定性:

在排序中,如果相同数的前后关系在排序后没有发生变化,就说明是稳定的; 否则是无序的

http://baike.baidu.com/view/547325.htm



1. 插入排序  时间复杂度o(n^2)  稳定的

    基本思想是,将序列分成两个部分,前一部分是sorted, 后一部分无序。 每次将后一个数 “插入”到前一部分中。 

    ind 从1到 n 循环。 temp 先保存这个值,然后依次向前比较,不满组条件就将那个元素向后移动,直到找到位置 temp 插入。

    

    根据查找方式的不同,分为:

    1. 直接插入排序: http://baike.baidu.com/view/396887.htm

    2.  二分插入排序: http://blog.csdn.net/morewindows/article/details/6665714

                                       http://hualang.iteye.com/blog/1187110

          虽然二分插入排序的复杂度低, 但是移动元素的时间复杂度仍然是 o(n^2)


   希尔排序  时间复杂度o(n^2) -o(n^2)  不稳定的

   在插入排序基础上的改进。使用增量对序列分组,在每组中使用插入排列。 然后缩小增量,再重复

    一般增量按一半递减,知道为1

   经过几次增量后,序列基本排好了。插入排序对已基本排好的序列效率比较高。 

   http://baike.baidu.com/view/178698.htm

   http://blog.csdn.net/morewindows/article/details/6668714



2. 冒泡排序  时间复杂度 o(n^2)  稳定的

    基本思想: 每次比较相邻的两个元素,依次比较下去。  相当于每次把最大的元素移动(冒泡)到了最后。  

    改进的方法为设置 flag, 如果没有交换,就停止;

      http://baike.baidu.com/view/254413.htm

      http://blog.csdn.net/morewindows/article/details/6657829


3.  选择排序  时间复杂度 o(n^2) 不稳定的

      和插入排序类似,分为有序和无序两个部分。 然后在无序中找到最大的元素,放在有序部分的最后面。 

      http://blog.csdn.net/morewindows/article/details/6671824

      http://baike.baidu.com/view/547263.htm


4.  快速排序 时间复杂度 O(nlog(n))  不稳定

     基本思想是: 分治思想。   用第一个数据做为基准数,序列分为两部分,前一部分比基准小,后一部分比基准大。 然后再递归的调用。

     分成两部分比较有技巧,可以参考下面的链接。

     http://baike.baidu.com/view/19016.htm

     http://blog.csdn.net/morewindows/article/details/6684558


5. 归并排序 时间复杂度 O(nlog(n))  稳定

    基本思想是: 分治发。   不断的合并有序序列。  可以看到和快速排序是相反的

    http://baike.baidu.com/view/90797.htm

    http://blog.csdn.net/morewindows/article/details/6678165


6. 堆排序  时间复杂度 O(n*log(n))

     将第0元素放在最后,n-1次后就排好了。 


7.  二叉树排序

     排序二叉树是每个点的左支树都小于该点,右支树都大于该点。 用链表来存储

      排序时用中序循环遍历一遍即可


6. 桶排序 

     非比较排序。 先根据某种映射函数,将数据分放入桶中。再在各桶中进行快速排序。 但桶排序对数据有一定的要求

      应用情况(参见第2个链接):

      1.对于数据量很大的情况,这个 方法会很快。

      2. 可以针对特定桶中的数据进行处理(内存使用较少)

      http://baike.baidu.com/view/1784217.htm

      http://blog.csdn.net/morewindows/article/details/6709644


7. 基数排序

     非比较排序。 把元素分成几个重要性不同的关键字,从小到大进行排序(为了保持小关键字的稳定性)

     具体可见: https://www.byvoid.com/blog/sort-radix

                          http://www.cnblogs.com/sun/archive/2008/06/26/1230095.html


8. 计数排序

     统计每个元素出现的次数。  然后统计小于每个元素的个数,比如为n,  在这个元素就放在 n+1 上。



总结:

1. 插入排序(->希儿排序), 选择排序:  都是分为有序和无序两个部分,不同是一个是一个一个按顺序插入,另一个是找到最大或最小插入。

其实可以想到,选择排序里查找函数用堆的话,就是堆排序。

2. 冒泡排序: 一个pair 一个pair 比较

3. 快速排序,归并排序:  都是用分治的方法。 一种是先分好顺序,直接合并;一种是合并好,再顺序化。

4. 堆排序,二叉树排序: 都是用特定的数据结构来排序。 只关心最大或最小的话,用堆最好。 二叉树可以一直维护排好序的序列。


非比较排序: 桶排序,基数排序,计数排序,


    


内容概要:本书《Deep Reinforcement Learning with Guaranteed Performance》探讨了基于李雅普诺夫方法的深度强化学习及其在非线性系统最优控制中的应用。书中提出了一种近似最优自适应控制方法,结合泰勒展开、神经网络、估计器设计及滑模控制思想,解决了不同场景下的跟踪控制问题。该方法不仅保证了性能指标的渐近收敛,还确保了跟踪误差的渐近收敛至零。此外,书中还涉及了执行器饱和、冗余解析等问题,并提出了新的冗余解析方法,验证了所提方法的有效性和优越性。 适合人群:研究生及以上学历的研究人员,特别是从事自适应/最优控制、机器人学和动态神经网络领域的学术界和工业界研究人员。 使用场景及目标:①研究非线性系统的最优控制问题,特别是在存在输入约束和系统动力学的情况下;②解决带有参数不确定性的线性和非线性系统的跟踪控制问题;③探索基于李雅普诺夫方法的深度强化学习在非线性系统控制中的应用;④设计和验证针对冗余机械臂的新型冗余解析方法。 其他说明:本书分为七章,每章内容相对独立,便于读者理解。书中不仅提供了理论分析,还通过实际应用(如欠驱动船舶、冗余机械臂)验证了所提方法的有效性。此外,作者鼓励读者通过仿真和实验进一步验证书中提出的理论和技术。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值