题解 P4277 【河城荷取的烟花】

学校的一场考试:

点进去你也无法登陆的传送门

技能比拼,分组方案,勇士的篝火

1.国王要嫁女儿啦!OI村庄里的勇士们都想去试试,但是(不好的事都叫但是)......

2.经过OI村子里的内部选拔,很多勇士都获得了村长的青睐,村长为了......

3.OI村庄的勇士如愿娶了国王女儿,村长打算......

讲了由村长暗箱操作让一群QIER勇士娶一位公主的故事

由情节就能看出数据水的一批

【河城荷取的烟花】的情节就美了很多

T3中出现了一个美观扭曲的图片:

题意:

现需燃尽一摊奇怪的绳子(学校里是木棍,差不多),要找一个整点点火,使得燃尽时间最短

要明白火的(此题中)特性

  • 点燃后,火会沿着木棍向前方燃烧,可以点燃与它相接的木棍
  • 只能在木棍的两端点燃

下面是一些没多大用处的话:


知识点:构图+最短路应用

在此题中是一个连通图,如果我们直接构图处理比较复杂~~根本不会~~。

我们对原问题进行转换:

由于绳&棍与绳&棍之间只能在绳&棍的两端或中间相交。我们把每根绳&棍拆分成两根相等的小绳&棍,这样,绳&棍的数量增加了一倍。

原问题就转化为,绳&棍与绳&棍之间只能在绳&棍的两端相交,这样处理起来就比较方便。

我们以绳&棍为边,绳&棍与绳&棍之间的交点为顶点,构建一个连通图,问题变为寻找一个合适的顶点,使得点燃以后完全燃烧的时间最短。


有用的:

  • 一个绳&棍可拆成两截小的绳&棍
  • (“显然”是没有原因的),燃烧时间等于点燃的顶点到图中最远点的时间,如下图:


 由上述,需求最短路:

于是我们~~怎么会有我~~可以利用Floyd's算法求出任意两点间的最短距离

余下还需检查每一条&根 绳&棍是否燃尽

当然,如果没有完全燃烧,应求出剩余边燃烧所需最长时间

一些有(有?)用的话:


 对于燃烧时间为L的木棍,它的两端被点燃的时刻为T1和T2

如果T1 = T2+L 或者是 T2 = T1+L,那么燃烧到T1 和 T2 的最大时刻,这根木棍己经完全燃烧

如果T1与T2之间的时间差不等于L,那么就说明火是从不同的路径燃烧到这根木棍的两端。火将从两端向中间燃烧,并在木棍内的某个点燃完

在简单情况中,如果是从两端同时点燃,燃烧时间为L/2。

更一般地,如果T1与T2不等,我们设一端是从0时刻点燃,另一端是从T时刻点燃,那么这根木棍的燃烧时间为

T + (L-(T-0))/2

即,一端先燃烧T时间后,另一端才开始燃烧,完全燃烧后的时间为

(L-(T-0))/2


 Floyd's :


 

 1 #include<bits/stdc++.h>
 2 
 3 using namespace std;
 4 
 5 double max(double a,double b)
 6 {
 7     if(a>b)return a;
 8     else return b;
 9 }
10 double min(double a,double b)
11 {
12     if(a<b)return a;
13     else return b;
14 }
15 int n;
16 int a1,a2,b1,b2,a1_5,b1_5,a[10001][10001];
17 double t;
18 double e[3001][3001],dis[3001][3001];
19 int tot=0;
20 bool mid[3001];
21 double minx=0x7fffffff,maxx=-0x7fffffff;
22 int main()
23 {
24     memset(dis,0x7fffffff,sizeof(dis));
25     memset(e,0x7fffffff,sizeof(e));
26     memset(mid,false,sizeof(mid));
27     scanf("%d",&n);
28     for(register int i=1;i<=n;i++)
29     {
30         scanf("%d%d%d%d%lf",&a1,&b1,&a2,&b2,&t);
31         a1=a1*2+400,b1=b1*2+400,a2=a2*2+400,b2=b2*2+400;
32         a1_5=(a1+a2)/2;
33         b1_5=(b1+b2)/2;
34         if(!a[a1][b1])a[a1][b1]=++tot;
35         if(!a[a2][b2])a[a2][b2]=++tot;
36         if(!a[a1_5][b1_5])
37         {
38             a[a1_5][b1_5]=++tot;
39             mid[tot]=true;
40         }
41         e[a[a1][b1]][a[a1_5][b1_5]]=t*1.00000/2;
42         e[a[a1_5][b1_5]][a[a1][b1]]=t*1.00000/2;
43         e[a[a2][b2]][a[a1_5][b1_5]]=t*1.00000/2;
44         e[a[a1_5][b1_5]][a[a2][b2]]=t*1.00000/2;
45         dis[a[a1][b1]][a[a1_5][b1_5]]=t*1.00000/2;
46         dis[a[a1_5][b1_5]][a[a1][b1]]=t*1.00000/2;
47         dis[a[a2][b2]][a[a1_5][b1_5]]=t*1.00000/2;
48         dis[a[a1_5][b1_5]][a[a2][b2]]=t*1.00000/2;
49     }
50     for(register int k=1;k<=tot;k++)
51     {
52         for(register int i=1;i<=tot;i++)
53         {
54             for(register int j=1;j<=tot;j++)
55             {
56                 if(dis[i][k]<0x7fffffff&&dis[k][j]<0x7fffffff)
57                 {
58                     dis[i][j]=min(dis[i][j],dis[i][k]+dis[k][j]);
59                 }
60             }
61         }
62     }
63     for(register int k=1;k<=tot;k++)
64     {
65         if(mid[k])continue;
66         maxx=-0x7ffffff;
67         for(register int i=1;i<=tot;i++)maxx=max(maxx,dis[k][i]);
68         for(register int i=1;i<=tot;i++)
69         {
70             for(register int j=1;j<=tot;j++)
71             {
72                 if(dis[k][i]<e[i][j]+dis[k][j]&&dis[k][j]<dis[k][i]+dis[i][j])
73                 {
74                     maxx=max(maxx,max(dis[k][i],dis[k][j])+(e[i][j]-max(dis[k][i],dis[k][j])+min(dis[k][i],dis[k][j]))/2.0);
75                 }
76                 
77             }
78         }
79         minx=min(minx,maxx);
80     }
81     printf("%.4lf",minx);
82     return 0;
83 }
View Code

 


其实,只要不直接抄题解,Ctrl+c & Ctrl+v 挺好的

但是(前面说过“但是”不是一个很好的词)上面这段代码交上洛谷不可能对

上代码是针对我校OJ的题,数据水的一批,截取:


 【数据范围】

100%的数据:

1<=n<=40;

|a|,|b|,|c|,|d|≤200, 0≤t≤1e7;


 运用邻接矩阵等知识点,10分不错了

做最短路方法太多了,例如SPFA,中国算法当然要用(模板好套)

有了前面代码的基础当然好写

奉上:


 

  1 #include<bits/stdc++.h>
  2 
  3 using namespace std;
  4 
  5 double max(double a,double b)
  6 {
  7     if(a>b)return a;
  8     else return b;
  9 }
 10 double min(double a,double b)
 11 {
 12     if(a<b)return a;
 13     else return b;
 14 }
 15 struct node
 16 {
 17     int from,to;
 18     double val;
 19     int nxt;
 20     node(int from=0,int to=0,double val=0,int nxt=0):from(from),to(to),val(val),nxt(nxt){};
 21 };
 22 int n,tot=0,len=0;
 23 double val;
 24 int a1,a2,b1,b2,am,bm;
 25 int f[10000];
 26 node edge[20000];
 27 int head[10000],a[4000][4000];
 28 double dis[10000];
 29 bool vis[10000];
 30 double ans=0x7fffffff;
 31 void add(int from,int to,double val)
 32 {
 33     edge[++len]=node(from,to,val,head[from]);
 34     head[from]=len;
 35 }
 36 int Num(int x,int y)
 37 { 
 38     if(!a[x][y])a[x][y]=++tot; 
 39     return a[x][y]; 
 40 }
 41 void SPFA(int s)
 42 {
 43     deque<int> q;
 44     memset(vis,0,sizeof(vis));
 45     memset(dis,127,sizeof(dis));
 46     dis[s]=0;
 47     q.push_front(s);
 48     vis[s]=1;
 49     while(!q.empty())
 50     {
 51         int cur=q.front();
 52         q.pop_front();
 53         vis[cur]=0;
 54         for(register int i=head[cur];i;i=edge[i].nxt)
 55         {
 56             int id=edge[i].to;
 57             if(dis[id]>dis[cur]+edge[i].val)
 58             {
 59                 dis[id]=dis[cur]+edge[i].val;
 60                 if(!vis[id])
 61                 {
 62                     vis[id]=true;
 63                     if(q.empty())q.push_front(id);
 64                     else
 65                     {
 66                         if(dis[id]<dis[q.front()])q.push_front(id);
 67                         else q.push_back(id);
 68                     }
 69                 }
 70             }
 71         }
 72     }
 73 }
 74 double calculate(int x)
 75 {
 76     double s=max(dis[edge[x].from],dis[edge[x].to]);
 77     s+=(edge[x].val-abs(dis[edge[x].from]-dis[edge[x].to]))/2;
 78     return s;
 79 }
 80 double check(int x)
 81 {
 82     SPFA(x);
 83     double ans=0;
 84     for(register int i=1;i<=len;i+=2)ans=max(ans,calculate(i));
 85     return ans;
 86 }
 87 int main()
 88 {
 89     scanf("%d",&n);
 90     for(register int i=1;i<=n;i++)
 91     {
 92         scanf("%d%d%d%d",&a1,&b1,&a2,&b2);
 93         a1=a1*2+2000,a2=a2*2+2000,b1=b1*2+2000,b2=b2*2+2000;
 94         am=(a1+a2)/2,bm=(b1+b2)/2;
 95         scanf("%lf",&val);
 96         val/=2;
 97         add(Num(a1,b1),Num(am,bm),val);
 98         add(Num(am,bm),Num(a1,b1),val);
 99         add(Num(a2,b2),Num(am,bm),val);
100         add(Num(am,bm),Num(a2,b2),val);
101         f[Num(a1,b1)]=1;
102         f[Num(a2,b2)]=1;
103     }
104     for(register int i=1;i<=tot;i++)if(f[i])ans=min(check(i),ans);
105     printf("%.4lf",ans);
106     return 0;
107 }
View Code

 


这个SPFA自然是可过的

Floyd's算法已经有大佬写的很好,就不需要我的了~~

好不容易写出来了,当然要发题解~~ ~~只有一篇,过的概率大一些~~

我要是过不去,岂不尴尬,求过o(╥﹏╥)o

谢谢Thanks♪(・ω・)ノ

再见ヾ( ̄▽ ̄)Bye~Bye~

转载于:https://www.cnblogs.com/XSZCaesar/p/10162403.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值