[动态规划] leetcode 32 Longest Valid Parentheses

problem: https://leetcode.com/problems/longest-valid-parentheses/

         在动态规划中,我们希望尽可能利用已经求解好的子问题结果。

        对于这道问题,我们可以假设我们已经知道了以第i个字符为结尾的最长有效括号个数为 x, 那么如果它的下一个字符(i + 1) 也能匹配上的话,结果为 x + 2, 就不需要重复计算之前的内容了。

        那么,我们应该如何判断下一个字符可以匹配上呢?首先,为了能够完成匹配,下一个字符应该是'(',它需要在前面找到一个')'。假设当前字符能够匹配x个,我们就需要跨过这x个字符,看这x字符的前一个字符是否是'(', 如果是,那么得到结果x + 2。

        通过以上方式,我们实际上相当于已知s是一个长度为x的有效括号匹配字符串,我们检测它的左右是否分别为(和), 也就是 ( s )。通过这种办法,我们得到了嵌套的括号递增。

        此外,我们还需要考虑另一种情况,对于有效括号匹配字符串,还有可能出现 s () 这样的字符串。所以,在检测到有效括号字符串后,我们需要在当前长度的前一个位置查询对应子串是否也是有效括号字符串,如果是,把两者结果叠加在一起。

        最终,我们扫描所有结果,找到最大的那个输出。

 

class Solution {
public:
    int longestValidParentheses(string s) {
        vector<int> dp(s.size(), 0);
        int res = 0;
        for (int i = 1; i < s.size(); i++)
        {
            if (s[i] == ')')
            {
                int index = i - 1 - dp[i - 1];
                if (index >= 0 && s[index] == '(')
                {
                    dp[i] = dp[i - 1] + 2;
                    if(i - dp[i] >= 0) dp[i] += dp[i - dp[i]];
                }


            }
            res = max(res, dp[i]);
        }
        return res;
    }
};

 

转载于:https://www.cnblogs.com/fish1996/p/11303591.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值