K折验证

K折验证(K-fold validation)将数据划分为大小相同的\(K\)个分区。对于每个分区\(i\),在剩余的\(K-1\)个分区上训练模型,然后在分区\(i\)上评估模型。最终分数等于K个分数的平均值。对于不同的训练集-测试集划分,如果模型性能的变化很大,那么这种方法很有用。K折验证也需要独立的验证集进行模型验证。示意图见下图:
1240
代码如下所示:

k = 4
num_validation_samples = len(data)  //  k

np.random.shuffle(data) #通常需要打乱数据

validation_scores = []
for fold in range(k):
    print('processing fold #', i)
    # 选择验证数据分区
    validation_data = data[num_validation_samples * fold:
      num_validation_samples * (fold + 1)]
    # 使用剩余数据作为训练数据。注意,+运算符是列表合并,不是求和
    training_data = data[: num_validation_samples * fold] +
      data[num_validation_samples * (fold + 1):]
    # 创建一个全新的模型实例(未训练)
    model = build_model()
    model.train(train_data)
    validation_score = model.evaluate(validation_data)
    validation_scores.append(validation_score)

# 最终验证分数:K折验证分数的平均值
validation_score = np.average(validation_scores)

# 在所有非测试数据上训练最终模型
model = get_model()
model.train(data)
test_score = model.evaluate(test_data)

转载于:https://www.cnblogs.com/DyerLee/p/10765040.html

### LSTM中的K交叉验证实现 在机器学习领域,尤其是深度学习模型中,如LSTM(长短期记忆网络),采用k交叉验证是一种常见的评估方法。这种方法可以提高模型性能估计的稳健性和可靠性[^1]。 对于LSTM模型的具体实现,以下是基于Python和TensorFlow/Keras框架的一个典型代码示例: ```python import numpy as np from sklearn.model_selection import KFold from tensorflow.keras.models import Sequential from tensorflow.keras.layers import LSTM, Dense # 假设X为输入特征矩阵,y为目标标签向量 def create_lstm_model(input_shape): model = Sequential() model.add(LSTM(50, activation='relu', input_shape=input_shape)) model.add(Dense(1)) # 输出层 model.compile(optimizer='adam', loss='mse') return model # 数据准备 (假设 X 和 y 已经准备好) X = ... # 输入数据形状应为 (n_samples, timesteps, features) y = ... # 目标变量 kf = KFold(n_splits=5, shuffle=True, random_state=42) for train_index, test_index in kf.split(X): X_train, X_test = X[train_index], X[test_index] y_train, y_test = y[train_index], y[test_index] lstm_model = create_lstm_model((X.shape[1], X.shape[2])) # 训练模型 lstm_model.fit(X_train, y_train, epochs=10, batch_size=32, verbose=0) # 测试集上的表现 score = lstm_model.evaluate(X_test, y_test, verbose=0) print(f"Test Loss: {score}") ``` 上述代码展示了如何利用`KFold`类进行划分,并针对每一轮训练一个新的LSTM模型实例。注意,在实际应用中可能还需要考虑其他因素,例如批量标准化、正则化以及超参数调整等问题[^2]。 此外需要注意的是,当涉及到时间序列预测时,简单的随机打乱样本可能导致未来信息泄露到训练集中;因此在这种情况下应该特别小心设计适合的时间序列分割方式而不是直接使用标准版本的k叠法。 #### 关于LSTM与RNN的关系及其优势说明 LSTM作为循环神经网络的一种变体形式,其核心在于引入了门控机制来解决传统RNN难以捕捉长期依赖关系的问题。这种特性使得它非常适合处理具有较长上下文关联的任务场景,比如自然语言处理或基因组数据分析等领域内的某些特定挑战性课题研究工作当中所遇到的情况。 ### 结论 综上所述,通过合理配置并结合具体应用场景需求来进行相应的修改之后就可以有效地完成带有LSTM组件参与下的多轮次重复型五重交叉检验流程操作啦!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值